Moment-Based Quantile Sketches
for Efficient Aggregation Queries

Fdward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, Peter Bailis

Stanford University

Motivation: Monitoring production data streams

Billions of events / day of mobile app telemetry data B Microsoft

Android i0S
Query for 99-th percentile

Group By Operating system

p99 latency

|

Where Location = USA

p99 latency

Quantile Query

time time

Spike in response latency, need to issue queries:

Percentiles are targeted: single metric, for specific sub-populations

Goal: Enabling fast quantile queries at scale

Query for 99-th percentile

m= Microsoft @ @ Users expect

: Large _— : :
Group By Operating System . Billions of a5 » Interactive response
Where Location = USA events per day

Baseline: Scan and sort billions of rows, multi-second latencies

_ 1 i , VF(0 .
TH P IL 9=9—V2F((9)) = Scalable Queries

rxeX

Data Summaries Statistics Optimization

Systems make use of summaries to scale

Raw values Summary Quantiles

99-th percentile: 401ms
- 95-th percentile: 197ms
=) al_l <

50-th percentile: 48ms

Summaries represent a dataset using sublinear space (e.g. histogram)

Quantile estimates can be extracted from a quantile summary

Commonly used to avoid sorting large datasets
SHIVE

ST

amilc

XGBoost

Pre-aggregating summaries reduces latency

Systems can pre-aggregate summaries for populations ahead of time
druid @& Microsoft

Data associated with day of week

Day=Weekend
Day=Sat
y » nll_ I \ 99-th percentile: 105ms
I I I 95-th percentile: 87ms
/ |
Day=Sun » I

50-th percentile: 40ms
Mergeable summaries’ can be combined without loss of accuracy

Improved query response time
1: [Agarwal et al, PODS ‘12]

Challenge: aggregations bottlenecked by merge

Many attributes means potentially more pre-aggregated subpopulations

App Version x OSVersion X Location X Day X HW Make

5 columns x 20 distinct values each = 3.2M combinations
Queries bottlenecked when merging pre-aggregated summaries

Greenwald Khanna Sketch: updatable equi-depth histogram
GK Performance: 3 ps x 1 million merges = 3 seconds

How can we optimize quantile summaries for aggregation?

Talk Outline

3. Summarizing data using statistics (moments sketch)
4. Improving sketch performance

5. Results: benchmark + integrated into data systems

Efficient data summaries using statistics

How can we optimize quantile summaries for aggregation?

Use statistics to summarize sub-populations (indexing)

Aggregate statistics using arithmetic (query time)

- e - -

BB B C O

- e e e = e = e = = e e e e e e e e e e e e e e e e e e e =

Moments: statistics that capture distribution shape

Moments: averages of powers of the data values.

: 1 ; : :
it moment: =22 The first moment is the mean.

rxeX

Intuition: Averages bound the number of “large” values

Bounding a distribution using moments

=
o
1

Data

2nd Moment Bound %Z x? = 1 limits size of the tail

—— 4th Moment Bound

o
(o]
1

%Z x* = 6 further limits size of tail

o
(o)}
1

o
D
1

Fraction of values > x

Given k moments,
distribution known to within 0(1/k),
0 : ; ; ; ; Can estimate quantiles

o
[N)

o
o
1

Quantile estimates from moments

Method-of-moments: technique for estimating distribution parameters
given moments. Used in statistics, econometrics, physics

Maximum Entropy Model (k=14)

Given k moments, we solve for the unique) et
distribution that:
1. Matches all k moments
2. Minimizes unwarranted assumptions
about the data (maximizes entropy) \

-12.5 -10.0 -7.5 -5.0 -25 0.0 2.5 5.0 7.5
Internet Usage (log)

With 14 moments, can estimate quantiles with 1% error on real data

1: [Wasserman, 2004], 2: [Jaynes, Phys. Rev. 1957]

Moments for fast quantile queries

Our contribution: method of moments can be used for
compact, efficiently mergeable, and accurate sketches

The moments sketch: an array tracking the min, max,
count, and k sums of powers (2 <k <15)

k Moments

Goals: low-memory footprint, fast to aggregate, fast to compute quantiles

Talk Outline

4. Improving sketch performance

5. Results: benchmark + integrated into data systems

Moments sketch has low aggregation overhead

min=0 max=>5.0 count=20 Yx =223 Yx? = 323.5 Yx3 =1017.0
min max add add add add
min=1 max=3.6 count=4 Yx =10.3 Yx? =18.3 Yx3 =817
Merged
min=0 max=5.0 count=24 Yx = 32.6 Yx? =341.8 Yx3 =1098.7

k + 3 primitive floating point operations
< 200 bytes in practice, k < 20

Method-of-moments is now a bottleneck

Solving quantiles from moments requires iterative optimization

Iteration 1 Iteration 2 Ilteration 3

Increasingly precise agreement with known moments

Challenge: Off the shelf solver routines too slow for interactive use

Convex optimization packages (cvxpy): 300ms to solve

14

Improvement: Accelerating method-of-moments

Practical improvements to a specialized optimization
routine bring solve time down to 1ms

Improved numeric stability using Chebyshev polynomials

Chebyshev Polynomials

Fast integration using polynomial approximation .
Selection of most informative moments

Cascades for short-circuiting percentile estimation

See paper (VLDB 2018) for details!

Talk Outline

5. Results: benchmark + integrated into data systems

Moments sketch enables fast roll-up queries

Single quantile query (800k merges)

‘ Moments Sketch

Random

Low-discrepancy

Greenwald Khanna

0 500 1000 1500 2000 2500

m Query Time (ms)

Milan: Single quantile query on cellular internet usage measurements
Moments Sketch: 23ms total query time on 800k merges

Comparably accurate mergeable summaries 15x slower

Random: [Wang et al, SIGMOD"13], Low-discrepancy: [Agarwal et al, TODS"13], Greenwald Khanna: [Greenwald et al, SIGMOD'01]
17

Performance scales with number of merges

Milan Query Time

103 _ : —>&= Moments Sketch
] S M- Low-Discrepancy
Tg 102 4 ++ ~p--- Random
P R o -+ Greenwald Khanna
E 10 - 15x speedup
S 100 omma Break-even at
5 1000 merges
101 +—— —— —— —— . S —rrr
101 102 103 104 10° 106 Poor performance
Number of Merges for few merges

Varying the number of merges in a single query

Moments sketch has fixed query overhead: method-of-moments solver

18

Accurate estimates with low space overhead

Mean Error £,,4

milan hepmass
1 L1 _ W
10 + > . '~..,..+P- u
] ?\(-;;/ »] " |
i +., i +,
- + > ey 1
1072 3 A "~+_ e 3) . k.
: = A e g
. o |
10—3 -
10_4 UL | L LR | L L ELLELLL | LB LA LR | L L L |
102 103 104 102 103 104

Size (Bytes)

Size (Bytes)

—>&= Moments Sketch
M- Low-Discrepancy
~p--- Random

-+ Greenwald Khanna

Accuracy of sketch varies with space used (bytes): error decreases

Moments sketch achieves 1% error with less space than other summaries

19

Performance translates to real-world systems

Druid Query (10M merges)

Streaming-Histogram |

Moments Sketch | EGN \

0 2 4 6 8 10 12

®m Runtime (s)

druid

Single quantile query over 10M summaries from the Milan data

Default streaming-histogram? sketch performance is poor

Integrated moments sketch as a user defined aggregate in Druid:
Better accuracy, 7x faster end-to-end queries

1: [Ben-Haim et al, JMLR'10]

14

20

Moments Sketch in MacroBase

MacroBase’ uses quantile queries to search for explanations:

Find attribute values which have App Ver7.0: p97 =125ms
97th percentile latency > 100ms USA, Android: p97 = 250ms

Using sketches lets us ingest pre-aggregated data: qbs
less network bandwidth vs raw event logs

Challenge: solve for quantiles on many attribute combinations

1: [Bailis et al, SIGMOD"17]

21

Performance translates to real-world systems

MacroBase Query (13M merges)

Low-Discrepancy I

Moments Sketch |

Moments Sketch + Cascade B

0 5 10 15 20 25 30 35 40 45

m Merge Time (s) ® Estimation Time (s)

Percentile(latency, 97) > 100ms

Naive moments sketch usage expensive due to repeated search queries

Cascades for short circuit evaluation reduce query time by 17x

22

Conclusion: Efficient sketches for quantile queries

Setting:
Quantile queries bottlenecked by slow summary data structures
Quantiles via Moments Sketch:
Statistical moments enable compact + efficient sketches
Method-of-moments + Entropy to recover distribution
Results:
15x faster query times, 7x integrated with Druid

Blog: dawn.cs.stanford.edu/2018/08/29/moments/ | |
Code: github.com/stanford-futuredata/msketch Edward Gan, edgan8.github.io

24

