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ABSTRACT
An emerging class of data systems partition their data and
precompute approximate summaries (i.e., sketches and sam-
ples) for each segment to reduce query costs. They can then
aggregate and combine the segment summaries to estimate
results without scanning the raw data. However, given lim-
ited storage space each summary introduces approximation
errors that affect query accuracy. For instance, systems that
use existing mergeable summaries cannot reduce query error
below the error of an individual precomputed summary. We
introduce CoopStore, a query system that optimizes item
frequency and quantile summaries for accuracy when aggre-
gating over multiple segments. Compared to conventional
mergeable summaries, CoopStore leverages additional mem-
ory available for summary construction and aggregation to
derive a more precise combined result. This reduces error
by up to 25× over interval aggregations and 4.5× over data
cube aggregations on industrial datasets compared to stan-
dard summarization methods, with provable worst-case er-
ror guarantees.
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1. INTRODUCTION
An emerging class of data systems precompute aggregate

summaries over a dataset to reduce query times. These pre-
computation (AggPre [39]) systems trade off preprocessing
time at data ingest to avoid scanning the data at query
time. In particular, Druid and similar systems partition
datasets into disjoint segments and precompute summaries
for each segment [48, 30]. They can then process queries
by aggregating results from the segment summaries. Unlike
traditional data cube systems [25], the summaries go beyond
scalar counts and sums and include data structures that can
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Figure 1: Mergeable summaries preserve accuracy when
combined but are less accurate than using a single larger
summary. CoopStore closes the gap by using Cooperative
summaries optimized for accurate aggregations.

approximate quantiles and frequent items [16]. As an ex-
ample, our collaborators at Microsoft often issue queries to
estimate 99th percentile request latencies over hours-long
time windows. Their Druid-like system precomputes quan-
tile summaries [22, 24] for 5 minute time segments and then
combines summaries to estimate quantiles over a longer win-
dow, reducing data access and runtime at query time by
orders of magnitude [44].
Although querying summaries is more efficient than query-

ing raw data, precomputing summaries also limits query ac-
curacy. Given a total storage budget and multiple data seg-
ments, each segment summary in an AggPre system has
limited storage space – often <10 kilobytes – and thus lim-
ited accuracy [3, 4]. Prior work on mergeable summaries
introduces summaries that can be combined with no loss in
accuracy, and are commonly used in AggPre systems [6, 24,
44]. However, even mergeable summaries have maximum
accuracy limited by the accuracy of an individual summary.
We illustrate this challenge in Figure 1. Consider a query
for the 99th percentile latency from 1:05pm to 2:05pm, and
suppose we precompute mergeable quantile summaries for
5 minute time segments that individually have 12% error.
Calculating quantiles over the full hour requires aggregating
results from 12 summaries, and mergeable summaries would
maintain 12% error for the final result. This is not ideal:
if the same space were instead used to store a single large
summary for the entire interval, we would have 12× less er-
ror with ε = 1%. On the other hand, using a single large
summary restricts the granularity of possible queries.
In this paper we introduce CoopStore, an AggPre query

system that uses Cooperative item frequency and quantile
summaries optimized for accurate aggregations. Unlike merge-
able summaries, aggregating results from multiple Cooper-
ative summaries results in lower error than any summary
individually. To achieve this CoopStore uses a different re-
source model than most existing summaries. While merge-
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able summaries assume the amount of memory available for
constructing and aggregating (combining) summaries is the
same as that for storage, we have seen in real-world deploy-
ments that AggPre systems have orders of magnitude more
memory for construction and aggregation.
To keep query times low, AggPre systems can ideally keep

summaries cached in memory. However, as data warehouses,
AggPre systems must support workloads over many data
sets partitioned along multiple dimensions. This means that
millions of summaries may have to share limited available
memory. Each quantile summary in Druid for instance is
configured for 2% error [3] and requires roughly 10 kB of
memory to store [4]. During data loading however, Druid
can use Hadoop map-reduce jobs that draw on large memory
and compute resources for summary construction. Further-
more, at query time engineers at Imply (the company devel-
oping Druid) report that standard deployments use query
processing jobs with 0.5 GB of memory. CoopStore takes
advantage of these additional resources to construct sum-
maries that compensate for the errors in other summaries
to reduce final query error.
CoopStore supports queries over intervals and data cubes

roll-ups. Interval queries aggregate over one-dimensional
contiguous ranges, such as a time window from 1:00pm to
9:00pm [9], while data cube queries aggregate over data
matching specific dimension values, such as loc=USA AND
type=TCP [25]. These two query types cover a wide class
of common queries and CoopStore can construct summaries
optimized for either of the two types. In settings with addi-
tional query types, CoopStore and Cooperative summaries
can be used alongside existing techniques: one can use the
space-efficient Cooperative summaries to improve accuracy
on applicable queries and less efficient methods such as on-
line aggregation [28] otherwise.
For both query types, when aggregating over k summaries

CoopStore can reduce error by nearly a factor of k for in-
terval aggregations and a factor of

√
k otherwise, compared

with no reduction in error for mergeable summaries. Since
modern workloads increasingly require aggregations over hun-
dreds to thousands of summaries, these accuracy improve-
ments are significant. In Figure 2 we describe a set of 33K
Top-K item frequency interval queries and 130K quantile
interval queries issued to an AggPre system at Microsoft
that partitioned data into 5-minute time segments. More
than half of the queries span intervals longer than a day
and thus aggregate hundreds of summaries. Over half of
the data cubes maintained by our collaborators at Micro-
soft also consisted of more than 10 thousand segments and
queries spanning hundreds of cube segments were common.

Interval Queries. For interval queries, CoopStore uses
Cooperative summaries that account for the cumulative er-
ror over consecutive sequences of summaries, and adjust
the error in new summaries to compensate. For instance,
if five consecutive item frequency summaries have cumula-
tively underestimated the true frequency of item x, cooper-
ative summaries can bias the next summary to overestimate
x. This keeps the total error for queries spanning k seg-
ments small. Hierarchical approximation techniques [9, 42]
can also be used here but require additional space and pro-
vide worse accuracy in practice.
We prove that our summaries have cumulative error no

worse than state of the art randomized summaries [50], and
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Figure 2: Distribution of user-issued time interval queries
to a Druid-like system at Microsoft. More than half of the
queries span > 100 five-minute segments.

for frequencies exceed the accuracy of state of the art hier-
archical approaches [9]. Empirically, our summaries provide
a 4-25× reduction in error on interval queries aggregating
multiple summaries compared with existing sketching and
summarization techniques.

Multi-dimensional Cube Queries. Data cube queries
can aggregate the same summary along different dimensions,
so compensating for errors explicitly along a single dimen-
sion is insufficient. Instead, for cube workloads CoopStore
uses Cooperative summaries that consist of weighted ran-
dom samples (PPS samples [15]) optimized specifically for
data cube workloads. CoopStore exploits the fact that data
cubes often have dimensions with skewed value distribu-
tions: some values or combination of values occur far more
frequently than others. Then, CoopStore optimizes the allo-
cation of storage space and statistical bias among the sum-
maries to minimize average query error. Empirically, these
optimizations yield an up to 4.5× reduction in average error
over data cube queries compared with standard data cube
summarization techniques.
In summary, we make the following contributions:

1. We introduce CoopStore, an approximate AggPre sys-
tem that provides improved query accuracy for item
frequency and quantile aggregations over multiple sum-
maries by taking advantage of additional memory re-
sources at data ingest and query time.

2. We develop novel Cooperative summaries for inter-
val queries with improved worst-case error bounds for
large interval aggregations.

3. We develop Cooperative summaries for data cube queries
with optimized space usage and bias to minimize av-
erage error under cube aggregations.

The remainder of the paper proceeds as follows. In Sec-
tion 2 we present CoopStore and its query model. In Sec-
tion 3 we describe Cooperative summaries optimized for in-
tervals. In Section 4 we describe Cooperative summaries
optimized for data cubes. In Section 5 we evaluate Coop-
Store accuracy and runtime. We describe related work in
Section 6 and conclude in Section 7.

2. SYSTEM DESIGN
In this section we describe CoopStore’s system design. We

discuss the types of queries supported, how summaries are
constructed for different query types, and how summaries
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Figure 3: CoopStore precomputes summaries at ingest
(Section 2.2) optimized to minimize error under aggrega-
tions. At query time, results from multiple summaries are
combined using a precise accumulator (Section 2.3).

are aggregated to provide accurate query results. We outline
the system components in Figure 3.

2.1 Queries
Consider data records ρ = (x, t, d1, . . . , dmd) where x is ei-

ther a categorical or ordinal value of interest (i.e. ip address,
latency), t is an ordered dimension for interval queries (i.e.
timestamp), and the dj are categorical dimensions (i.e. lo-
cation). A CoopStore query gQ(x) specifies an aggregation
of records Q and a function g to estimate for the value x. Q
defines an aggregation with a selection condition: either a
one-dimensional interval or a multi-dimensional cube query
[9, 25].

Definition 1. An interval aggregation specifiesQ(interval) =
{ρ : T0 ≤ t < T1} for T0, T1 aligned at a time-resolution TG
(T0, T1 mod TG = 0) and maximum length T1−T0 ≤ kT ·TG.

Definition 2. A data cube aggregation specifies Q(cube) =
{ρ : di1 = vi1 ∧ . . . ∧ dik = vik} for di1 , . . . , dik a subset of
the dimensions to condition on.

The query function g is either an item frequency f or rank r
[17, 33]. An item frequency f(x) is the total count of records
with value x while a rank r(x) is the total count of records
with values less than or equal to x. We use g generically to
denote either frequencies or ranks.

fQ(x) =
∑
ρi∈Q

1xi=x rQ(x) =
∑
ρi∈Q

1xi≤x. (1)

Using these primitives, CoopStore can also return estimates
for quantiles and Top K / Heavy Hitters queries, which we
will discuss in more detail in Section 2.3.

2.2 Data Ingest
Before CoopStore can ingest data, users specify whether

they want to support interval or data cube aggregations,
and whether they are interested in frequency or rank query
functions. Users also specify total space constraints and
workload parameters. A dataset can be loaded multiple
times to support different combinations of the above. Like
Druid [48], segment summaries in CoopStore are immutable
once created so data updates can be done by re-ingesting
data for any segments with updated data.
CoopStore then splits the data records into atomic seg-

ments D. These segments form a disjoint partitioning of a
dataset, and are chosen so that any aggregation can be ex-
pressed as a union of segments. For interval aggregations
users specify a time resolution TG and a maximum length
kT , defining segments Di = {ρ : i ·TG ≤ t < (i+1) ·TG}. For

cube aggregations the partitions are defined by grouping by
all md of the dimensions D~v = {ρ : d1 = v1 ∧ · · · ∧ dmd =
vmd}. Defining finer partitionings into more segments al-
lows for more flexible queries but can degrade query ac-
curacy as seen in Figure 1 and later in our evaluation in
Figure 8. CoopStore can alleviate this degradation so in
practice users should define partitions based on the smallest
resolution they expect to be relevant for querying.
Once the dataset is partitioned we can represent the records

in each segmentD as mappings from item values xj to counts
δj , and for each segment CoopStore constructs a Cooper-
ative summary S consisting of s value, count mappings

D = {xj 7→ δj : xj ∈ D}
S = {xj1 7→ γj1 , . . . , xjs 7→ γjs}.

This is similar to other counter based summaries [35, 17] and
weighted sampling summaries [50]. Unlike tabular sketches
such as the Count-Min Sketch [19] Cooperative summaries
include the item values x. We assume we have enough mem-
ory and compute to generate S, making our construction
routines similar to coreset construction [41]. More details on
how the values x and counts γ are chosen for each summary
are given in Section 3.1 for interval aggregations and Sec-
tion 4.1 for cube aggregations. Interval summaries can be
constructed sequentially in one pass over the data segments
while cube summaries require two passes: one to optimize
summary parameters and one to construct each summary.

2.3 Query Processing
After the summaries have been constructed, the Coop-

Store query processor can return query estimates ĝQ(x) for
different aggregations Q by using the summaries Si as prox-
ies for the segments Di. Then, using g to denote a generic
query function, we can derive frequency or rank estimates
over a query aggregation Q by adding up the estimates for
the segment summaries.

fS(x) :=
∑
xj∈S

γj · 1xj=x rS(x) :=
∑
xj∈S

γj · 1xj≤x

ĝQ(x) =
∑
Si∈Q

gSi(x) (2)

For rank or frequency estimates for a specific item ĝQ(x) a
query processor can accumulate estimates using Equation 2.
To support queries for ranks and counts of potentially un-
known items, for instance in quantile and top-k queries,
CoopStore accumulates items and counts from summaries
into an accumulator A which is a map tracking all items
and their cumulative counts. Note that unlike systems that
use mergeable summaries, the accumulator A can grow to
be larger than any individual summary. The accumulator
A can then be queried for quantiles or top item frequencies.
Given sufficient memory, A can track items and counts pre-
cisely incurring no additional error beyond the error inherent
in the cumulative items and counts of the summaries.
When memory is constrained we instead let A be a stan-

dard but very large stream summary of the proxy values
and counts stored in S1, . . . , Sk. We specifically use a Space
Saving sketch [35] for heavy hitters and a PPS (VarOpt [15])
sample for quantiles. In practice the space sA available to A
is orders of magnitude greater than the space s available to
any precomputed summary, i.e. 50,000× in the deployments
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Table 1: Summary Error ignoring constants combining k
summaries. The Cooperative summaries used by CoopStore
have reduced errors for large k.

Summary εQ Total Space

Coop. Cube (PPS) 1/(s
√
k) sk

Coop. Interval Freq. log kT /(sk) sk
Coop. Interval Quant.

√
kT /(sk) sk

Mergeable [6] 1/s sk

Uniform Sample 1/
√
sk sk

Hierarchical [9, 42] log k/(sk) sk log kT

at Imply described in Section 1.
Our prototype implementation of CoopStore is a single-

node system, but can be extended to distributed settings
following a standard design where distributed query pro-
cessors aggregate results into partial accumulators and re-
ducer(s) combine the partial accumulators (See [10] for an
example).

2.4 Error Model
Consider the absolute (i.e. unscaled) error

εQ(x) = gQ(x)− ĝQ(x) =
∑
Di∈Q

(gDi(x)− gSi(x)) (3)

which is the difference between the true and estimated item
frequency counts or ranks. Throughout the paper, we de-
note the absolute count or rank error with ε, but compare
final query accuracy based on the normalized (scaled) error
ε = ε/|Q| [6] where |Q| is the number of items encompassed
in the query |Q| =

∑
ρi∈Q 1. Unless otherwise stated we will

use ‘error’ to refer to the normalized error. Limited-memory
approximate accumulators A would introduce additional er-
ror ε(A) (zero for precise accumulators) in approximating the
proxy item counts in the summaries S, yielding an absolute
error of:

ε
(A)
Q (x) ≤ |εQ(x)|+ |ε(A)(x)|. (4)

Furthermore we are interested in systems that provide error
bounds over all values of x, so we consider the worst case
error ε(A)

Q := maxx |ε(A)
Q (x)|. A bound on the maximum

error over all x also bounds the error of any quantile or heavy
hitter frequency estimate derived from the raw estimates ĝ.
To analyze the error, consider an aggregation Q accumu-

lating k segments, each with the same number of records
n = |D| =

∑
xi∈D δi and represented using summaries of size

s. Also, suppose that the accumulator A has size sA � s, so
that ε(A) = 0. Suppressing logarithmic factors, state of the
art frequency and quantile summaries have absolute error
O(n/s) [31, 17, 6, 41]. Different summarization techniques
yield different errors as the size of the aggregation k grows.
CoopStore can reduce error significantly for large k. We
summarize bounds on the normalized error in Table 1.
Merging mergeable summaries [6] preserves normalized er-

ror so we have

ε
(merge)
Q ≤ O(1/s). (5)

Instead of merging, using an exact accumulator applied
to the estimates of standard summaries gives us ε(A)naive

Q ≤∑
Di∈Q |O(n/s)| so we also have

ε
(A)naive
Q ≤ O(1/s). (6)

Table 2: Notation Reference

ε Normalized error ε Absolute error
D Data Segment S Data Summary
|D| # items in segment s Summary space
f(x) Item Freq. r(x) Item rank
g(x) Freq. or Rank Pret Prefix interval
kT Max Interval length k Segments in query

However, CoopStore is able to achieve lower query error
by reducing the sum of errors from summaries in Equation 3.
By using independent, unbiased, weighted random samples –
specifically PPS summaries in Section 4.1 – sums of random
errors centered around zero will concentrate to zero, and one
can use Hoeffding’s inequality to show that with high prob-
ability and ignoring log terms

∑
Di∈Q εDi(x) ≤ O(

√
kn/s)

so

ε
(A)PPS
Q ≤ O

(
1√
ks

)
. (7)

This already is lower than the error for mergeable summaries
in Equation 5 for k � 1.
In practice, Cooperative summaries (Section 3) achieve

even better error than PPS summaries. Cooperative sum-
maries for data cubes use PPS and introduce further size and
bias optimizations, while Cooperative interval summaries
use more sophisticated specialized algorithms.
We can prove that Cooperative quantile summaries over

intervals satisfy worst-case bounds similar to standard PPS
summaries but have much lower error on real-world datasets.
Cooperative frequency summaries over intervals satisfy
maxx |ε(A)CoopFreq

Q (x)| ≤ O(n log kT /s)

ε
(A)CoopFreq
Q ≤ O

(
min(log kT , k)

ks

)
(8)

where kT is the maximum length of an interval, which is
much stronger than the guarantees provided by standard
PPS summaries. See Section 3.3 for more details and proof
sketches.
Hierarchical estimation is a common solution for interval

(range) queries [9, 19] and show up in differential privacy
as well [18]. We will describe an instance of these methods
to illustrate their error scaling. A dyadic (base 2) hierarchy
stores summaries of size s · 2h for h = 1 . . . log kT to track
segments of different lengths. They can thus estimate inter-
vals of length k with error ε(A)Hier

Q ≤ O(n log k/s), similar
to our cooperative frequency sketches. However, they in-
cur an additional log kT factor in space usage to maintain
their multiple levels of summaries and provide worse error
empirically than Cooperative summaries.

3. COOPERATIVE INTERVAL SUMMARIES
In this section we describe Cooperative summaries for in-

terval queries. These summaries achieve high query accu-
racy when aggregated by compensating for accumulated er-
rors over sequences of summaries.

3.1 Interval Summary Construction
Given space for s counters (xi 7→ γi), Cooperative sum-

maries must accurately represent a single segment of data.
To match state of the art summary error on a single segment
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linear combination of aligned intervals Pret. In this example,
Q is expressed as A ∪B \ C

D we want

max
x
|ĝS(x)− gD(x)| ≤ r|D|/s (9)

for an accuracy parameter r ≥ 1. r is an adjustable hyper-
parameter: larger r allows for larger errors on a single seg-
ment but allow Cooperative summaries to better control er-
ror accumulation over longer intervals (See Theorem 1 in
Section 3.3). However, there are multiple ways to choose
the items to store in S that would satisfy Equation 9.
Within these constraints, CoopStore can choose xi, γi to

minimize the total error for queries that aggregate multiple
summaries. CoopStore explicitly minimizes the error over
intervals with fixed start points every kT segments, where
kT is the maximum supported query interval length. We call
these aggregation intervals “prefix” intervals Pret, a modifi-
cation of standard prefix-sum ranges [29].

Pret = {DkT bt/kT c, . . . ,DkT bt/kT c+t mod kT }. (10)

Figure 4 illustrates how any consecutive interval of up to
kT segments can be represented as an additive combination
of up to 3 prefix intervals. As long as prefix intervals have
bounded error εPret = gPret − ĝPret , any contiguous interval
of segments up to length kT has error at most 3ε. Thus,
CoopStore constructs Cooperative summaries for intervals
incrementally, tracking the cumulative error over prefix in-
tervals εPret(x) in order to construct summaries that mini-
mize this error. However, at query time, the summaries can
be aggregated without consideration for the prefix intervals.

Example. Consider constructing Cooperative summaries
for frequency queries over intervals with accuracy parame-
ter r = 1.1. Since CoopStore constructs interval summaries
incrementally, suppose CoopStore has already constructed
summaries for three successive time segments D1,D2,D3

since the last prefix start point and is now constructing a
summary S4 with size s = 4 for time segment D4 with 1000
items. To accurately represent D4, S4 must include any item
in D4 that occurs with frequency at least r · |D4|/4 = 275,
in our example assume there are two such items A which
occurs 500 times and B which occurs 300 times.
Our method for constructing S4 will store the true counts

for A,B and use the remaining space for two counters to
store items which have been underrepresented cumulatively
in the summaries from the current prefix interval S1, S2, S3

and compensate for the discrepancy ∆. If F and H are the
two items most severely underrepresented then S4 will store
the current counts for F ,H, which occur 10 and 5 times in
D4, adjusted up to the error tolerance r · |D4|/4 to reduce
the cumulative summarization error for those items. In our
example suppose this cumulative discrepancy ∆ > 275 for
F ,H. S4 is then {A 7→ 500,B 7→ 300,F 7→ 285,H 7→ 280}

3.2 Interval summary details

The details of the summary construction algorithm differ
for frequencies and ranks and we present the pseudocode for
their construction below.

Algorithm 1 Cooperative Frequencies on Intervals
function CoopFreq(Dt, s)

h← |Dt|/s
εPret(x)← εPret−1(x) + fDt(x)
St ← {x 7→ fDt(x) : fDt(x) ≥ h} . Heavy hitters
while |St| < s do . Correct Accumulated Errors

xm ← arg maxx∈Pret\St (εPret(x))
δm ← min (r · h, εPret(x))
St ← St ∪ {xm 7→ δm}
εPret(x)← εPret(x)− δm · 1x=xs

return St

In Algorithm 1 we present the pseudocode for construct-
ing a cooperative summary of size s for frequency estimates
on a data segment Dt. To satisfy Equation 9 and accurately
represent Dt, we store the true count for any segment-local
heavy hitter items in Dt that occur with count greater than
|Dt|/s. The remaining space in the summary is allocated to
storing adjusted counts for the x with the highest cumulative
undercount εPret(x) to correct for accumulated approxima-
tion error. The adjusted count is the smaller of r|D|/s and
εPret(x). This ensures Equation 9 is satisfied and also keeps
εPret(x) positive, a useful invariant for proofs later. Larger r
allow the algorithm trade off higher local error for less error
accumulation across summaries.

Algorithm 2 Cooperative Quantiles on Intervals
function CoopQuant(Dt, s)

h← |Dt|/s; St ← {}
εPret(x)← εPret−1(x) + rDt(x)
Dt1, . . . ,Dts ← Partition(Dt, s) . Sorted Chunks
for i ∈ 1 . . . s do

L(z) :=
∑
y∈U φ(εPret(y))

xs ← arg minz∈Dti L(z) . Minimize Loss
St ← St ∪ {xs 7→ h}
εPret(x)← εPret(x)− h · 1x≥xs

return St

In Algorithm 2 we present pseudocode for constructing a
cooperative summary of size s for rank estimates on a data
segment Dt. To satisfy Equation 9 and accurately repre-
sent Dt, we sort the values in D and partition the sorted
values into s equally sized chunks. Then CoopQuant se-
lects one value in each chunk to include in St as a repre-
sentative with proxy count |D|/s. This ensures that any
rank can be estimated using St with error at most |D|/s.
Within each chunk, we store the item that minimizes a
total loss L =

∑
x∈U φ(εPret(x)) with φ(ε) = cosh (αε),

α = s/(
√
kTnmax), nmax = maxt |Dt| the maximum size

of a data segment, and kT the maximum interval length.
cosh(x) = 1

2
(ex + e−x) is used in discrepancy theory [46]

to exponentially penalize both large positive and large neg-
ative errors, so L serves as a proxy for the L∞ maximum
error. Note that we need to bound nmax to set α for this
algorithm, though in practice accuracy changes very little
depending on nmax

3.3 Interval Query Error
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CoopFreq and CoopQuant both provide estimates with lo-
cal absolute error εD(x) ≤ r|D|/s for a single segment D,
and minimize the cumulative absolute error over εPret(x)
prefix intervals (and thus general intervals). In this section
we analyze how εPret(x) grows with t. This allows us to es-
tablish the bounds on the query error when aggregating any
sequence of kT Cooperative summaries (Used in Section 2.4).
The general strategy will be to define a loss Lt which is a

function of the absolute errors εPret(x) parameterized by a
cost function φ

Lt :=
∑
x∈U

φ (εPret(x)) (11)

where U is the universe of observed values x ∈ |Pret|. We
can bound the growth of Lt when CoopQuant and CoopFreq
are used to construct sequences of summaries. Then, we can
relate Lt and maxx |εPret(x)| to bound the latter. Omitted
proofs can be found in an associated technical report [23].

3.3.1 CoopFreq Error
For frequency summaries, we use the cost function φ(x) =

exp(αx) for a parameter α. Since Algorithm 1 always
produces underestimates for counts in prefix intervals, the
error εPret(x) is always positive so we can minimize Lt as a
proxy for the maximum error. Lemma 1 bounds how much
Lt can increase with t.

Lemma 1. When CoopFreq constructs a summary with
size s for Dt the loss satisfies

Lt ≤ Lt−1 + αr|Dt|

for φ(x) = exp(αx) as long as 0 < α ≤ 2 s
|Dt|

r−1
r2

.

Given this lemma, we can bound the growth of Lt and relate
that to the cumulative error:

Theorem 1. CoopFreq maintains

max
x∈U
|εPret(x)| ≤ 1

α
ln

(
1 + αr

t∑
i=1

|Di|

)
where α = 2 s

maxi |Di|
r−1
r2

.

To illustrate the asymptotic behavior we can apply Theo-
rem 1 with r = 3

2
and consistent segment weights n = |Di|

to see in Corollary 1 that the absolute error grows logarith-
mically with the number of segments k in the interval.

Corollary 1. For r = 3
2
and |Di| = n, CoopFreq main-

tains

max
x∈U
|εk(x)| ≤ 9

4

n

s
ln

(
1 +

2

3
nk

)

In fact this result is close to optimal: an adversary gener-
ating incoming data can guarantee at least Ω(log k) error
accumulation by generating data containing items the sum-
maries have undercounted the most so far.

3.3.2 CoopQuant Error
For rank queries we use the cost function φ(x) = coshαx,

inspired by previous work in discrepancy theory [46]. Since
cosh z = 1

2
(exp(z) + exp(−z)) this exponentially penalizes

both under and over-estimates symmetrically, and is thus

a smooth proxy for the maximum absolute error. As with
CoopFreq, Lemma 2 bounds the growth of Lt.

Lemma 2. When CoopQuant constructs a summary with
size s for Dt the loss function satisfies

Lt ≤ Lt−1 expα2(|Dt|/s)2/2

for φ(x) = cosh(αx)

As with frequency errors, we can then bound the growth of
Lt and relate that to the cumulative error:

Theorem 2. CoopQuant maintains

max
x∈U
|εPret(x)| ≤ 1 + 2 ln (2|U |)

2s

√√√√ t∑
i

|D|2t

with φ(x) = cosh(αx) and α = s
(∑t

i=0 |Di|
2
)−1/2.

This can be instantiated for data segments with constant
total weight in Corrollary 2, which shows that CoopQuant
has absolute error O(

√
k/s).

Corollary 2. For |Dt| = n constant and φ(x) = cosh(αx)
with α = s

n
√
k
, CoopQuant maintains

max
i∈U
|εPrek (i)| ≤ n

2s

(√
k + 2 ln (2|U |)

)

4. COOPERATIVE CUBE SUMMARIES
For cube queries, CoopStore uses Cooperative summaries

that consists of weighted probability proportional to size
samples (PPS) [15, 47] with an optimized allocation of space
and bias between the summaries to improve average query
accuracy across data cube aggregations.

4.1 PPS Summaries
A PPS summary is a weighted random sample that in-

cludes items with probability proportional to their size or
total count in a data segment D [15, 47, 50]. Values xi with
true occurence count D(xi) = δi are sampled for inclusion
in the summary S according to Equation 12

Pr[xi ∈ S] = min(1, δi/h) (12)

S(xi) =

{
h δi ≤ h
δi δi > h

(13)

for an accuracy parameter h. Heavy hitters that occur more
than h times are always sampled with their true count, while
those with count 0 ≤ δi ≤ h are either included with a
proxy count of h or excluded from the summary. Thus,
S(xi) is an unbiased estimate for δi with maximum local
error of h. Following details in [15] one can set h using a
procedure we denote CalcT (Algorithm 4, Stream-τ in [15])
that ensures the summary will have size at most s. Coop-
erative summaries then store items to ensure either rank or
frequency estimates have absolute segment error bounded
by h.

4.2 Cube Summary Construction
Cooperative summaries for data cubes are constructed for

an entire cube in batch with a total space budget ST . This
opens up the opportunity for optimizations across the entire
collection of summaries.
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In most multi-dimensional data cubes some queries and di-
mension values will be much rarer than others. This makes
it wasteful to optimize for worst-case error: even the rarest
data segment would require the same error and space as
more representative segments of the cube. Thus, Cooper-
ative data cube summaries make use of limited space by
optimizing the allocation of space and bias between sum-
maries to minimize the average error of queries sampled from
a probabilistic workload W specified by the user. We show
in Section 5.3.1 that the workload does not have to be per-
fectly specified to achieve accuracy improvements.

Example. Consider item frequency queries for items x in
a data cube with four segments defined by two binary di-
mensions d1, d2 ∈ {0, 1}. In this example, the distribution of
dimension value pairs (d1, d2) among the data is 70% (0, 0),
20% (0, 1), 7% (1, 0) and 3% (1, 1). A query Q1 for item
frequencies over the entire cube would consist primarily of
items from the segments for (0, 0) and (0, 1), so to mini-
mize the error for Q1 one would allocate more space to the
summaries corresponding to (0, 0) and (0, 1) than the oth-
ers. However, another query Q2 for item frequencies with
(d1, d2) = (1, 1) would benefit solely from the space to the
summary for that segment. Given an expected workload of
queries CoopStore allocates space between Cooperative sum-
maries to balance these competing concerns: for a workload
where Q1 is very likely an optimal summary space allocation
could be 40% (0, 0), 30% (0, 1), 20% (1, 0) and 10% (1, 1).

4.3 Minimizing Average Error
Consider the error incurred by combining summaries over

a query Q = D1, . . . ,Dk, where the segment summaries Si
have size si and represent segments with total count |Di| =
ni. Then, based on Equation 12, the normalized error εQ(x)
is a random variable that depends on the items selected for
inclusion in the PPS summaries. We will bound the mean
squared error E[ε(x)2].
For a single segment Di, the PPS summary is unbiased

and returns both frequency and rank estimates that lie within
a possible range of length h. Thus, the absolute error sat-
isfies E[εDi(x)] = 0 and E[εDi(x)2] ≤ 1

4
h2 ≤ 1

4
n2
i /s

2
i , and

since the summaries Si are independent:

E[ε2Q] ≤ 1

4

∑
Di∈Q

(
ni
si

)2

.

We consider a workload W as a distribution over possi-
ble queries Qi where Pr[Qi ∼ W ] = qi. This is based off
of the workloads in STRAT [13], though STRAT targets
only count and sum queries using simple uniform samples.
To limit worst-case accuracy, we can optionally impose a
minimium size for each segment summary smin so that the
maximum relative error for any query is ε ≤ 1

smin
.

Space Allocation. Now, we minimize the mean squared
error for queries drawn from a workload Qz ∼ W where
Pr[Qz] = qz. Let |Qz| =

∑
Di∈Qz

|Di|.

EQz∼W
[
ε2Q
]
≤ 1

4

∑
Di∈D

n2
i

s2i

 ∑
z|Di∈Qz

qz|Qz|−2

 (14)

We can solve for the si that minimize the RHS of Equa-
tion 14 under the total space constraint that

∑
i si = ST

using Lagrange multipliers. The optimal si are si ∝ α
1/3
i

where

αi = n2
i

∑
z|Di∈Qz

qz|Qz|−2 (15)

Since we can compute αi given W , this gives us a closed
form expression for an allocation of storage space.

Bias and Variance. When estimating item frequencies,
we can further reduce error by tuning the bias of our Coop-
erative summaries to reduce their variance. Though this
does not generalize to quantile queries, the improvements
in accuracy for frequency queries can be substantial, and
we have not seen other systems optimize for bias across a
collection of summaries.
For example, consider a segment D with n > 4 unique

items that each only occur once. If we summarize the data
with an empty summary, estimating 0 for the count of each
item, we introduce a fixed bias of 1 but have a deterministic
estimator with no variance. This substantially reduces the
error compared to an unbiased PPS estimator constructed
on D which will have variance n2( 1

n
·(1− 1

n
)) = n(1− 1

n
) > 3.

However, returning back to our example, if we introduced
a large (positive) bias to each segment in a data cube then
queries like Q1 which span multiple segments would accu-
mulate bias from all of the segment summaries, limiting the
final accuracy. Thus CoopStore intelligently allocates biases
between the segments, balancing local reductions in variance
with potential bias accumulation.
In general, if we have a segment D consisting of item

weights {xi 7→ δi} then we bias the frequency estimates
f̂D(x) by subtracting b from the count of every distinct el-
ement in D before constructing a PPS summary, and then
adding b back to the stored weights. During PPS construc-
tion, h and thus the variance is reduced because D has a
lower effective total weight ni[b] given by

ni [b] =
∑
xi∈D

(δi − b)+ (16)

where (x)+ is the positive part function (x)+ = max(x, 0).
The error for a single segment Di is now bounded by εi ≤

bi + νi where bi is the bias and νi is the remaining unbiased
PPS error on the bias-adjusted weights, so the MSRE for a
query Q is:

E
[
ε2Q
]
≤ |Q|−2

 ∑
Di∈Q

bi

2

+
∑
Di∈Q

1

4

(
ni [bi]

2

s2i

) (17)

Equation 16 shows that n[b] is convex with respect to b since
it is a sum of convex functions (max is convex), so the RHS
of Equation 17 is convex as well.

Recap. In summary CoopStore does the following for cube
aggregations.

1. Set summary sizes si ∝ α1/3
i using Equation 15, scaled

so
∑
si = ST .

2. Solve for biases ~b that minimize the RHS of Equa-
tion 17 for Q a query over the entire dataset.

3. Construct PPS summaries according to ~s and ~b

We optimize Equation 17 using the LBFGS-B solver [11]. To
simplify computation we optimize bi for a single aggregation:
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the whole cube. An optimal setting of ~b for this whole cube
query will not increase error over any other query compared
to ~b = 0.

5. EVALUATION
In our evalution, we show that:

1. Cooperative interval summaries achieve lower error as
interval length increases compared with other summa-
rization techniques: up to 8× for frequencies and 25×
for quantiles (Section 5.2.1).

2. Cooperative cube summaries provide lower average er-
ror compared with alternative techniques, with reduc-
tions between 20% to 4.5× (Section 5.2.2).

3. Cooperative summary accuracy generalizes across dif-
ferent system and summary parameters, including ac-
cumulator size, maximum interval length, and work-
load specification (Sections 5.3.1 and 5.3.2).

4. Cooperative summaries introduce moderate query time
(up to 3×) and significant construction time (over 90
seconds) overheads compared to existing mergeable
summaries. (Section 5.4)

5.1 Experimental Setup
Error Measurement. Recall from Section 2.4 that we are
interested in error bounds that are independent of a specific
item or value x, so we evaluate the maximum error over x for
a query Q: εQ := maxx |εQ(x)|. For a large domain of values
U it is infeasible to compute maxx∈U so for frequency queries
we estimate the maximum over a sample of 200 items drawn
without replacement for item frequency queries and over 200
equally spaced quantiles from the complete dataset for quan-
tile queries. Following common practice for approximate
summaries [6], we scale the absolute count or rank error ε
by the total size of the queried data to report normalized
errors εQ · |Q| = εQ.

Implementation. We evaluate implementations of
Cooperative summaries (Coop) as part of our prototype sys-
tem CoopStore written in Java with code available1. Run-
time numbers when applicable are measured on an Intel
Xeon 2.2Ghz machine2. Our prototype is a single node in-
memory system though it can be extended to a distributed
system in the same manner as Druid.
Our implementation of CoopFreq (Algorithm 1) uses r = 1

and sets h using CalcT from Section 4.1 rather than letting
h = |Dt|/s which provides better segment accuracy while
preserving the error bounds under a modified proof. We
implement CoopQuant (Algorithm 2) with a cost function
parameter α set based on a maximum interval length of kT =
1024, and loss L calculated over the universe of elements seen
so far when the full universe is not known ahead of time.

Datasets. We evaluate frequency estimates on 10 million
destination ip addresses (CAIDA) from a Chicago Equinix
backbone on 2016-01-21 available from CAIDA [12], 1 billion
items (Zipf) drawn from a Zipf (Pareto) distribution with

1https://github.com/stanford-futuredata/
sketchstore
2n1-highmem-32 on Google Cloud Compute

Table 3: Cube Datasets

Data Dims Segments Summary Space

Instacart 4 10080 300000
Zipf-C, Uniform-C 4 10000 50000
Traffic 4 5938 50000
OSBuild, Provider 4 5938 100000

parameter s = 1.1, 32 million item purchases from the In-
tacart open dataset (Instacart) [1], and 10 million records
from a production service request log at Microsoft with cat-
egorical item values for network service provider (Provider)
and OS Build (OSBuild). We evaluate quantile estimates on
2 million active power readings (Power) from the UCI In-
dividual household electric power consumption dataset [21],
10 million random values (Uniform) drawn from a continu-
ous uniform U ∼ [0, 1] distribution, and 10 million records
from the same Microsoft request log with numeric traffic
values (Traffic). All of the the above have an associated
sequential column for interval queries except for Instacart.
We evaluate cube queries on our datasets with categorical

dimension columns, with parameters summarized in Table 3
and total space limit set to provide roughly consistent query
error across the datasets. Zipf-C and Uniform-C consist of
10 million items from the Zipf and Uniform datasets associ-
ated with four dimension columns of 10 possible values each
drawn from a zipf distribution with parameter z = 1.0.

5.2 Overall Query Accuracy
Summarization Methods. We compare a number of
summarization techniques for frequencies and quantiles, and
configure them to match total space usage.
We compare against three popular mergeable summaries:

the optimal streaming quantiles sketch (KLL) from [31] and
the low-discrepancy quantile sketch (LDisc) from [6] (the
default quantiles sketch in Druid) both implemented by the
Apache data sketches package [2], as well as the Count-
Min frequency sketch (CMS) [19]. We also compare with the
popular streaming (but not strictly mergeable) Misra-Gries
sketch (MG) from [36] as implemented in the Apache data
sketches package [2]. For the count-min sketch we set d = 5
and let the width w = s parameter represent the space us-
age. We also compare against uniform random sampling
(USample) [16], probability proportional to size sampling
(PPS) [15], and optimal single-segment summaries (Trunc)
that summarize a segment by storing the exact item counts
for the top s items, or storing s equally spaced values for
quantiles.
For interval queries we further compare with storing Trunc

summaries in a hierarchy (Hierarchy) following [9, 18]. The
Hierarchy summarization strategy with base b constructs
h layers of summaries. Summaries in layer i are allocated
space bi · s0 to summarize aligned intervals of bi segments.
Any query interval of length k can be represented using
bdlogb ke summaries from different layers. Since this requires
maintaining h = logb kT layers, to fairly compare total space
usage we scale the space s0 allocated to the lowest layer sum-
maries by a factor s0 = s/ logb kT . Unless otherwise stated
we use b = 2, though we will show in Section 5.3 that the
choice does not have a significant impact on accuracy.
For cube queries we also compare with cube AQP tech-

niques that use uniform USample with different space allo-
cations: the Prop method uses USample summaries but al-
locates space proportional to each segment size as a global
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Figure 5: Query error over interval queries of different lengths. Cooperative summaries have increasingly high accuracy as
the query length increases.
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Figure 6: Average query error over a workload of cube queries. Cooperative summaries consistently provide lower average
error than other AggPre summarization methods.

uniform random sample would, while the STRATmethod uses
the method in the STRAT AQP system [13], which like
Cooperative summaries allocates space to minimize average
error.

Query Processing. For all counter and sample-based
summaries including Coop, PPS, Trunc, USample, and Hier-
archy, we set the number of counters or samples to the same
s and aggregate results from the summaries into an exact ac-
cumulator (a map from items to their cumulative counts).
When accumulator memory is limited, we use a streaming
sketch to accumulate results which introduces vanishing ad-
ditional error as the size of the accumulator grows (Fig-
ure 9). For summaries with native merge routines including
KLL, LDisc, CMS, and MG, we aggregate results by merging
the summaries using their associated error-preserving merge
routines [6].

5.2.1 Interval Queries
We first evaluate CoopStore accuracy on interval queries,

partitioning datasets with associated time or sequence columns
into kT = 2048 size time segments. Then, we construct sum-
maries with storage size s = 64.
In Figures 5a and 5b we show how relative query error

εQ varies with the number of segments k spanned by the
interval. For k = 1, 2, 4, . . . , 1024 we sample 400 random
start and end times for intervals with length k and plot the
average and standard error of the query error.
Cooperative summaries outperform mergeable and other

existing summaries as k increases. As the interval length in-
creases, merging the mergeable summaries (CMS, KLL) and MG
maintain their error as expected. Accumulating Trunc sum-

maries also maintains the same constant error. Hierarchy,
PPS, and USample are all able to reduce error when combin-
ing multiple summaries, while Cooperative summaries out-
perform all alternatives as k exceeds 10 summaries. We
observe that despite our weaker worst-case bounds for coop-
erative quantile summaries, they achieve higher accuracy in
practice compared to alternative methods. However, Coop-
erative summaries are not as accurate when aggregating less
than 10 summaries compared to alternatives.

5.2.2 Cube Queries
For each of our data cube datasets we evaluate on a de-

fault query workload where each dimension has an indepen-
dent p = .2 probability of being included as a filter, and
if selected the dimension value is chosen uniformly at ran-
dom. In Figures 6a and 6b we show the average relative
error for frequency and quantile queries over 10000 random
cube queries drawn from the specified workloads. We see
that, on average, Cooperative summaries outperform alter-
native summarization techniques that allocate equal space
to each segment, as well as uniform sampling techniques
that optimize sample size allocation but do not use more
sophisticated summaries or perform bias optimization.
In Figure 7 we break down the error for cube queries that

filter on different numbers of dimensions on the Uniform-C
and Zipf-C cube workloads. Cooperative summaries reduce
the error for queries that filter on zero or one dimension.
As a tradeoff Cooperative incurs higher error than other
methods for queries with three or more filters. For a many
workloads this tradeoff is desirable, and is configurable based
on the user specified workload.
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Figure 8: Varying the number of segments in a partitioning
for a fixed interval query. As we increase the granularity of
the partitioning, the query error for a fixed interval grows
for most summaries, though Cooperative summaries remain
more accurate than others.

5.3 Varying Parameters
Now we vary different system and summarization param-

eters to see their impact on accuracy, confirming that Coop-
erative summaries are able to provide improved accuracy
under a variety of conditions.

5.3.1 System Design
The CoopStore system depends on a number of parame-

ters. In this section we will show how accuracy varies with
the granularity of partitioning datasets into segments, the
accumulator size sA, and the use of the size and bias opti-
mizations Cooperative summaries use for data cubes.

Segment Granularity. CoopStore and other AggPre
partition data into segments: more segments allows for more
precise query conditions but constrains the size of each seg-
ment given total memory limits. In Figure 8 we measure the
query error of interval frequency queries spanning a quarter
of the CAIDA dataset when CoopStore partitions the data
into varying numbers of segments. As the number of seg-
ments increases, query error for the same interval increases
as well, though less so for Cooperative, Hierarchy, and uni-
form sampling than other summaries.

Finite Accumulator. In our evaluations for counter and
sample-based summaries without a native merge routine, we
accumulate results into an exact accumulator A that tracks
items and weights. In settings where query memory is lim-
ited A would introduce an additional approximation error
ε(A) = 1/sA which is negligible as sA →∞.
In Figure 9 we illustrate how using accumulators of differ-

ent sizes, affects final query accuracy on the Power and CAIDA
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Figure 9: Query error as we vary the size of the accumu-
lator sA. For the large accumulators used in practice there
is negligible additional error from the accumulator.
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Figure 10: Lesion Study on Zipf cube optimizations. Re-
moving any component reduces accuracy, though adjusting
the workload parameter slightly improves accuracy.

datasets. For each size, we measure the error after accumu-
lating 100 random interval aggregations spanning k = 512
segments. For the accumulators here we use SpaceSaving
[35] for frequency queries and a streaming implementation
of PPS (VarOpt [15]) for quantiles. ε(A) goes to 0 as sA →∞,
and with at least 10 megabytes of memory available for sA
the additional error is negligible.

Cube Optimizer Lesion Study. In Figure 10 we show
how the optimizations Cooperative summmaries (Coop) use
for summarizing data cubes all play a role in providing high
query accuracy by removing individual optimizations on the
Zipf dataset. We experiment with removing the size op-
timizations (Coop (-Size)) and bias optimizations (Coop (-
Bias)), and try replacing PPS summaries with uniform ran-
dom samples (Coop (-PPS)). When, size optimization or bias
optimization are removed, error increases, and similarly er-
ror increases when PPS summaries are replaced with uni-
form random samples.

Cube Workload Specification. We also evaluate how
CoopStore accuracy depends on precise workload specifica-
tion by constructing CoopStore instances configured for in-
correctly specified workloads. Rather than the true p = 0.2
probability of including a dimension in the cube filter, we
evaluate Cooperative summaries optimized for inaccurate
workloads with p = 0.05 and p = 0.50. As seen in Figure 10,
in both cases error remains below existing cube construction
methods.

Interval Length Specification. For interval aggrega-
tions users specify a maximum expected interval length kT .
In Figure 11 we show the relative error for 20 random queries
of length k = 64 as we vary kT . All values kT ≥ 64 achieve
good error and setting kT much larger does not negatively
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Figure 11: Error as we vary the maximum interval length
parameter kT . Overestimating kT does not significantly
change the quality of results.
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Figure 12: Query error as summary size changes. Cooper-
ative summaries, like state of the art, have error ε = O(1/s)

affect results. In practice accuracy is also robust to different
values of kT as long as it is conservatively longer than the
expected queries.

5.3.2 Summary Design
Now we will examine how Cooperative summaries perform

as individual segment summaries. The experiments below
are run on the CAIDA dataset for interval aggregations.

Space Scaling. In Figure 12 we vary the space available to
summaries for different interval lengths, confirming that like
other state of the art summaries and sketches Cooperative
and PPS summaries provide local segment error that scales
inversely proportional to the space given, and maintain their
accuracy under a wide range of summary sizes.

Hierarchical base b. Although Hierarchy summaries are
parameterized by a base b, in Figure 13 we show that differ-
ent values for b do not noticeably improve performance. Al-
though there are improvements in optimizing b when merg-
ing small numbers (k < 10) of summaries, the difference is
less than 10% for larger aggregations.

5.4 Runtime
Though Cooperative summaries and our AggPre proto-

type CoopStore are optimized to improve accuracy under
memory constraints rather than to minimize runtime, in this
section we evaluate their query time and construction time
performance.

Query Time. In Figure 14 we evaluate the query time for
interval queries on a representative subset of the datasets:
omitted datasets show similar trends. Cooperative sum-
maries and other summaries that make use of a precise ac-
cumulator have worse query time scaling than mergeable
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Figure 14: Query time over intervals. Cooperative sum-
maries introduce an up to 3× overhead but runtimes remain
below 10ms.

summaries like CMS as the accumulator grows over longer ag-
gregations. Since Cooperative can provide dramatically im-
proved accuracy and query time remains below 10ms, Coop-
erative summaries remain practical for systems like Druid.
Query times over data cubes are similar.

Construction Time. To evaluate the construction time
overheads of pre-computing different summaries, we mea-
sured the time taken to construct summaries over different
datasets, excluding the time required to read raw records
from disk. Tables 4 and 5 illustrate the time required to
construct summaries over interval and data cube segments.
These overheads can be large but since we target settings

where data loading is done using distributed batch process-
ing systems they are not a significant bottleneck. Cooper-
ative interval summaries require additional processing for
tracking accumulated error that can result an roughly 2×
construction overhead for frequencies and an up to 2000×
overhead for quantiles compared to the fastest summaries.
The overhead for constructing quantile summaries is high
for the Uniform dataset since tracking the cumulative errors
requires sorting very large sets of distinct values. Cooper-
ative cube summaries require optimizing summary bias and
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Figure 15: Query time over cubes. Cooperative summaries
introduce an up to 2× runtime overhead.

Table 4: Interval Summaries Construction Time (ms)

sketch Coop Hierarchy USample Trunc PPS CMS MG KLL LDisc

CAIDA 827 2741 521 564 479 588 644 – –
Zipf 96K 505K 44K 51K 41K 64K 47K – –
Power 614 990 120 93 98 – – 88 98
Uniform 89K 863 76 57 57 – – 45 46

size allocation which results in an up to 3× construction
overhead compared to the fastest summaries.

6. RELATED WORK
Precomputing Summaries. A number of existing ap-
proximate query processing (AQP) systems make use of pre-
computed approximate data summaries. An overview of
these “offline” AQP systems can be found in [32], and they
are an instance of the AggPre systems described in [39]. Like
data cube systems they materialize partial results [27], but
can support more complex query functions not captured by
simple totals. Another class of systems use “online” AQP
[28, 10, 43] and provide different latency and accuracy guar-
antees by computing approximations at query-time.
We are particularly motivated by Druid [48, 44] and sim-

ilar offline systems [30] which aggregate over query-specific
summaries for disjoint segments of data. However, these sys-
tems use mergeable summaries as-is, and do not optimize for
improving accuracy under aggregation or take advantage of
additional memory at query time to accumulate results more
precisely. The authors in [49] apply hierarchical strategies
to maintain summary collections for interval queries but like
mergeable summaries maintain do not reduce error when
combining summaries. Systems like BlinkDB [7], STRAT
[13], and AQUA [5] maintain random stratified samples to
support general-purpose queries. Our choice of minimiz-
ing mean squared error over a workload follows the setup
in STRAT [13]. However, individual simple random sam-
ples are not as accurate as specialized frequency or quantile
summaries [37].
Techniques for summarizing hierarchical intervals [9] are

complementary, but incur additional storage overhead mak-
ing them less accurate than Cooperative summaries and
scale poorly to cubes with multiple dimensions [42].

Streaming and Mergeable Summaries. Many com-
pact data summaries are developed in the streaming liter-
ature [26, 36, 19, 31], including summaries for sliding win-
dows [8]. However, the standard streaming model generally
assumes limited working memory during summary construc-
tion [38]. Mergeable summaries [6] allow combining multi-
ple summaries but require that intermediate results take up

Table 5: Cube Summaries Construction Time (ms)

sketch Coop USample STRAT Prop Trunc MG CMS KLL LDisc

Zipf-C 1177 647 681 650 659 378 639 – –
Provider 489 115 133 114 107 249 593 – –
Uniform-C 765 720 763 726 715 – – 500 542
Traffic 417 390 411 389 386 – – 462 478

no more space than the inputs, and thus merely maintain
relative error under merging. Other work targeting Agg-
Pre systems has focused on improving summary update and
merge runtime performance [24, 34] rather than improving
the accuracy of query results.

Other Summarization Models. The CoopStore model,
where more memory is available for construction and aggre-
gation than for storage, is closer to the model used in non-
streaming settings including discrepancy theory and com-
munication theory.
Coresets and ε-approximations are data structures for ap-

proximate queries that allow more resource-intensive pre-
computation and aggregation [41]. ε-approximations are
part of discrepancy theory which attempts to approximate
an underlying distribution with proxy samples [14]. We
draw inspiration from discrepancy theory to manage error
accumulation in our cooperative summaries, especially the
results in [46] which pioneered the use of the cosh cost func-
tion. Other work in this area minimize error accumulation
along multiple dimensions [40]. However, we are not away of
coreset or ε-approximations that allow for complex queries
CoopStore supports: quantiles and item frequencies over
multiple data segments. and cube aggregations. In par-
ticular, existing work supporting range queries [40] do not
provide per-segment local guarantees. Recent work devel-
oping hierarchical histograms [45] optimize size allocation
among histograms similar to our Cooperative cube sum-
maries and [13], but target range queries and do not address
per-segment error for quantiles and item frequencies.
Work in communication theory and distributed stream-

ing assume the network is a bottleneck when aggregating
results. There is existing work analyzing how multiple ran-
dom samples can be combined to reduce aggregate error
in this setting [50, 51]. However, in communication the-
ory the samples are constructed per-query, while CoopStore
precomputes summaries that can be used for arbitrary fu-
ture queries. Furthermore random samples are not as space
efficient as Cooperative summaries.
Related techniques in differential privacy [42, 18] and ma-

trix rounding [20] consider approximate representations of
data segments for the purposes of privacy, but do not explic-
itly optimize for space or support heavy hitters and quantile
queries.

7. CONCLUSION
CoopStore uses Cooperative summaries that are optimized

to reduce query error over large aggregations. Cooperative
summaries take advantage of additional memory resources
available at summary construction and aggregation and tar-
get a common class of structured frequency and quantile
queries. These summaries can thus efficiently serve a range
of monitoring and data exploration workloads.
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APPENDIX
A. PPS SUMMARIES
PPS summaries for item frequencies and ranks have been

studied in the sampling literature, and in this section we
reproduce implementation details relevant to our use of PPS
summaries in CoopStore.
In Algorithm 3 we present a known procedure to set h as

low as possible to minimize error while keeping the summary
size of a PPS summary at most s (Algorithm 4, Stream-τ in
[15])

Algorithm 3 Calculate minimal h threshold
function CalcT(D, s)

h← |D|/s
H ← {} . Local Heavy Hitters
while maxx∈D\H fD(x) ≥ h do

xmax ← arg maxx∈D\H D(x)
H ← H ∪ {xmax}
h←

∑
x∈D\H fD(x)

s−|H|

return h

One way to implement PPS is to independently sample
items according to Equation 12, but this does not guaran-
tee the summary will store exactly s values. Instead we use
the PairAgg procedure in Algorithm 4 to transform sam-
pling probabilities for pairs of items until we have s or s− 1
values with probability 1. We can do so in a way that guar-
antees that the error maxx |ε(x)| ≤ h and is unbiased with
E[ε(x)] = 0 for both frequency and rank queries. See [15]
for details.

Algorithm 4 Pair Aggregation for PPS
function PairAgg(pi, pj)

if pi + pj < 1 then
if rand() < pi/(pi + pj) then pi ← pi + pj ; pj ← 0
else pj ← pi + pj ; pi ← 0

else
if rand() < 1−pj

2−pi−pj
then pi ← 1; pj ← pi + pj − 1

else pi ← pi + pj − 1; pj ← 1

B. COOPERATIVE SUMMARY PROOFS
Lemma 1.

Proof. Recall that we have a segment

Dt = {x1 7→ δ1, . . . , xr 7→ δr}.

LetH be the set of local heavy hittersH = {xi : δi ≥ h} and
let U ′ = U \H be the remaining items. We can decompose

14



our summary as St = SH ∪ SV where V = St \H.

SH = {xi 7→ δi : xi ∈ H} (18)
SV = {xi 7→ min(εt−1(xi) + δi, rh) : xi ∈ V }. (19)

This keeps εt(x) ≥ 0 across segments, i.e. our estimates are
always underestimates.
Let G = Lt − Lt−1 =

∑
xi∈U [φ(εt(xi))− φ(εt−1(xi))]

where φ(z) = exp(αz). For heavy hitters εt(xi) = εt−1(xi)
so they do not change the cumulative cost Lt.

G =
∑
xi∈V

[φ(max(εt−1(xi) + δi − rh, 0))− φ(εt−1(xi))]

+
∑

xi∈U′\V

[φ(εt−1(xi) + δi)− φ(εt−1(xi))]

Simplifying using max(0, y) = y+(0−y)1y≤0 and φ(x+y) =
φ(x)φ(y):

G =
∑

xi∈U′\V

φ(εt−1(xi) + δi) [1− φ(−δi)]

+
∑
xi∈V

φ(εt−1(xi) + δi) [φ(−rh)− φ(−δi)]

+
∑
xi∈V

[φ(0)− φ(εt−1(xi) + δi − rh)] · 1εt−1+δi≤rh

For non-heavy hitters, Algorithm 1 selects items in V with
the highest εt−1(xi)+δi. If we let ` = arg minxi∈V εt−1(xi)+
δi then

∀xi ∈ V εt−1(x`) + δ` ≤ εt−1(xi) + δi

∀xi ∈ U ′ \ V εt−1(x`) + δ` ≥ εt−1(xi) + δi.

Technical but standard applications of the inequalities φ(x) ≥
1 + ax, and φ(x) ≤ 1 + αx+ α2x2/2 for x ≤ 0 yields:

G ≤φ(εt−1(x`) + δ`)|V |
[
αh− αhr + α2h2r2/2

]
+ αrh|V |

|V | ≤ s and h ≤ |Dt|/s so when α ≤ 2
h
r−1
r2

, G ≤ αr|Dt|

Lemma 2.
Proof. First note that the choice of which element zj is

chosen from each chunk for inclusion in the summary sam-
ple St does not affect εt(x) for x outside the chunk Dt,j so
we can consider the choices independently. This is because
the selected element is assigned a proxy count equal to the
population of the whole chunk h = |Dt,j | = |Dt|/s.
Let Lt,j :=

∑
xi∈Dt,j

φ (εt(xi)) be total cost for chunk j.
Since Algorithm 2 selects a value z that minimizes Lt, the
final value for Lt,j must be lower than any weighted average
of the possible Lt,j for different choices of x.

Lt,j ≤
∑

z∈Dt,j

fDt(z)

h

 ∑
x∈Dt,j

φ
(
εt−1(x) + rDt,j (x)− 1x≥zh

)
Abbreviate px := 1

h
rDt,j (x) = 1

h

∑
xi∈Dt,j

δi ·1xi≤x. Switch-
ing the order of summation gives:

Lt,j ≤
∑

x∈Dt,j

[pxφ(εt−1(x) + hpx − h)

+ (1− px)φ(εt−1(x) + hpx)]

Now we can make use of Lemma 3 below to simplify

Lt,j ≤ exp(α2h2/2)Lt−1,j

Finally, since Lt =
∑s
j=1 Lt,j we have the lemma.

Lemma 3 can be proven using the cosh angle addition
formula and Taylor expansions.

Lemma 3. For 0 ≤ p ≤ 1 and t ≥ 0

p cosh(x+ t(p−1))+(1−p) cosh(x+ tp) ≤ exp(t2/2) cosh(x)
(20)

Proof. We abbreciate cosh, sinh as c, s and the left hand
side of Equation 20 as LHS. Using the angle addition for-
mula:

LHS = p [c(x)c(t(p− 1)) + s(x)s(t(p− 1))]

+ (1− p) [c(x)c(tp) + s(x)s(tp)]

Then since s(x) ≤ c(x):

LHS ≤ pc(x) [c(t(p− 1)) + s(t(p− 1))]

+ (1− p)c(x) [c(tp) + s(tp)]

= c(s) [p exp(t(p− 1)) + (1− p) exp(tp)]

We now consider two cases: t < 2 and t ≥ 2.
If t < 2, we expand out taylor series to get that:

p exp(t(p− 1)) + (1− p) exp(tp) ≤ 1 +
t2

2
(p(1− p)) · 3

≤ 1 + t2/2 ≤ exp(t2/2)

If t ≥ 2 then

p exp(t(p− 1)) + (1− p) exp(tp) ≤ exp(tp)

≤ exp(t) ≤ exp(t2/2)

In either case we can conclude that:

LHS ≤ cosh(x) exp(t2/2)

B.1 Error Lower Bounds
In this section we will provide details on an adversarial

dataset for which no online selection of items for a counter-
based summary can achieve better than absolute ε = Ω(log k)
error for item frequency queries.

Theorem 3. There exists a sequence of k = 2h+1 data
segments Di consisting of |Di| = 2s item values each such
that for all possible selections of s items for counter-based
summaries Si, ∃x.|fDi,...,Dk (x)− f̂Si,...,Sk (x)| ≥ h.

Proof. Consider a universe of item values U = 1, . . . , 2s2h.
For i = 1, . . . , 2h let Di = {2s(i−1)+1, . . . , 2si} where each
item occurs at most once. Since each summary Si can only
store s item values, there must be a set of s2h items (U1)
that are not stored in any summary, but that have appeared
at least once in the data. Now let the next 2h−1 data seg-
ments Di for i ≥ 2h+1 constain 2s distinct item values each
from U1. Again, since each summary can only store s item
values now there must be a set of s2h−1 items (U2) that are
not stored in any summary, but that have appeared twice in
the data. This repeats for for increasing Ui: at each stage
Ui we have data segments come in that contain only items
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Figure 16: Query time over cubes. Cooperative summaries
introduce an up to 2× overhead over the fastest mergeable
summaries.

the summaries have not been able to store, until we have
at least one item not stored in any summary but that has
appeared h+ 1 times in the data.

C. ADDITIONAL EVALUATIONS
Query Time over Cubes. In Figure 16 we show the
query times for different summary types on additional data
cube datasets.
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