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Abstract

The inner workings of most computer systems must manipulate both pure data and volatile
resources. Numbers are usually an example of pure data, since they can be freely copied and
used wherever they are needed. However, there are situations where files must be opened and
closed, memory must be allocated and freed, and locks must have their ownership tracked
while being passed carefully from thread to thread. Managing dynamic resources such as
these is a perennial source of programmer frustration.

Substructural logics are a mathematical framework for reasoning about resources. Unlike
standard logics, substructural logics limit where their assumptions can be reused or ignored.
Thus, programming languages have been developed which adapt these logics into their type
systems. These languages control the usage of resources by restricting where values can be
reused or ignored.

In this thesis I present Clamp, a programming language with a substructural type system
that is framed in terms of type classes. Type classes are a system for constraining types
by the operations they support, and their integration with substructural types offers both
theoretical and practical advantages. Clamp supports a variety of polymorphic substructural
types as well as a powerful system of mutable references. At the same time, the Clamp core
calculus remains simpler than ones in other substructural languages.

I have also implemented a type checker for Clamp in Haskell, and its design provides
evidence that the substructural types in Clamp fit cleanly on top of standard type checking
algorithms.
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Chapter 1

Introduction

Programming languages have made substantial progress in abstracting away physical con-
straints. Even in a low-level language such as C, one can write code that manipulates integers
at will, reusing and discarding them as if they were pure mathematical objects rather than
bits in the machine. However, it is hard to escape completely from issues of state and re-
source usage: programmers still routinely make mistakes in accessing memory after it has
been deallocated, writing to a shared pointer without synchronization, sending data along
a socket before acknowledgement, etc... It is difficult to write correct state-handling code
partly because most compiler and type systems do not do a good job of statically tracking
state.

In this thesis, I present a framework for developing programming languages with static
state management. More specifically, I argue that by formulating substructural types in
terms of type classes (explained later), one can design type systems to manage state in a
way that is both theoretically elegant and convenient for programmers.

On their own, substructural types provide a way of controlling state by counting resource
usages, but adding them to existing languages requires major additions to the type system
and unfamiliar forms of programmer annotation. On the other hand, type classes were orig-
inally a mechanism for function overloading, but have become widely accepted for purposes
ranging from generic programming to type level computation: their usability in theory and
in practice is well established. In some sense, by encoding substructural types as instances
of type classes, one can add substructural types to a language at marginal cost. Moreover,
the interactions between type classes and substructural types make it easy to include rich
state-aware datatypes such as weak and strong references.

To exhibit this, I have developed the Clamp programming language, which brings to-
gether type classes, substructural types, and rich reference types into a coherent whole. In
the remainder of this chapter, I describe the intuition behind substructural types and survey
previous language designs that include substructural types. Then I introduce the concept of
type classes and describe how they can be used to support substructural types.

Chapter 2 serves as an informal description of the Clamp programming language, struc-
tured as a tutorial and highlighting its support for substructural types alongside polymor-
phism and mutable references. In chapter 3, I describe an algorithm for inferring the sub-
structural annotations that the Clamp type system expects, easing boilerplate burdens on
the programmer while keeping the type system simple. Chapter 4 describes the Clamp type
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2 CHAPTER 1. INTRODUCTION

system in mathematical detail and presents a basic semantics to prove type soundness. Chap-
ter 5 documents the development of the Clamp type checker as an extension of a Haskell
type checker, and sketches a more fully-featured reference counting semantics for Clamp.
Finally, I conclude in chapter 6 by summarizing the contributions of the thesis and pointing
towards future work.

1.1 Substructural Types
Type systems enforce rules about the kinds of data that can be used at certain points of
a program. They help programmers in writing correct code and compilers in generating
efficient code [Harper and Morrisett, 1995]. However, while standard type systems can
enforce data usage policies, they do little to help programmers manage resources, or more
generally, protocols involving state. This shortcoming has inspired a host of research into
tools such as Valgrind to detect incorrectly allocated memory, or static analysis tools such
as SLAM [Ball and Rajamani, 2002] to check for driver protocol compliance.

Substructural type systems make it possible to control resources and state by restricting
the number of uses of a value [Walker, 2005]. We will consider four classes of substructural
types that classify values with different usage restrictions.

linear values that must be used exactly once

affine values that can be used at most once

relevant values that must be used at least once

unlimited values with no restrictions on their uses

One way of making sense of these four classes is to view them as a lattice from most restrictive
to least restrictive as in figure 1.1.

Unlimited: No Restrictions

Affine: Uses <= 1 Relevant: Uses >= 1

Linear: Uses = 1

Figure 1.1: URAL Lattice

As examples of substructural types, consider a type system with distinct integer types
distinguished by substructural specifiers. Given a linear integer type intL the function

λ
(
x : intL

)
. x+ x
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would be ill-typed since once x is bound, it is used twice, while

λ
(
x : intR

)
. x+ x

would be well-typed for a relevant integer type intR. On the other hand,

λ
(
x : intR

)
. 5

would be ill-typed since x is ignored (used less than once) after it is bound.
By restricting usage in this way, one can enforce a variety of policies involving resources or

state. These range from socket protocols to reader-writer locks, and include any protocol ex-
pressible as a DFA [Tov and Pucella, 2011, Mazurak et al., 2010]. For instance, if one assigns
file handles a linear type, then one can ensure (assuming termination) that a handle will be
closed exactly once, since as a value with linear type it must be either closed and eliminated
or passed onto another function. Other metaphorical examples of substructural resources
include gold coins, which are affine if one allows for losing coins but not reusing them as
payment, and radioactive waste, which is relevant if one allows for spreading contamination
but not ignoring it.

The file handle example is a simple illustration of the power of linear types, and it is
useful to go into more detail here to motivate substructural types. In Walker [2005] the
authors describe a design for a file I/O library which considers file handles as a linear type to
ensure that they are opened and closed properly. In an OCaml-like syntax then, the interface
to their library is reproduced below:

type file : linear

val open : string -> file option
val read : file -> string * file
val write : file * string -> file
val close : file -> unit

The open function generates linear file handles in a way which is opaque to the library
user, while the close function consumes file handles. Since files are linear, once a file has
been closed the same handle cannot be reused to further read, write, or close the same file.
The library still allows for the repeated reading and writing because these two functions
consume a file handle, but also return a fresh file handle for further access to a file. At
runtime the library implementations of read and write may in fact return the same file
handles they were passed, but statically they provide a way to thread the usage of linear file
handles together.

Even more so than files, one of the most prevalent and precious resources on a computer
is memory, and substructural types offer a host of possibilities for managing this resource as
well. In a language with linear types, a linear value can be neither duplicated or discarded, so
its value can be either deallocated or reused immediately after use [Wadler, 1991], eliminating
the need for garbage collection on this value. Linear types can also be used to enforce
proper copying and disposal of unlimited values, formalizing the development of reference
counting systems with provably absent memory leaks [Cheney and Morrisett, 2003, Chirimar
et al., 1996]. Though this does not extend to cyclic data structures, it simplifies memory
management for a large class of functional, DAG-like structures.
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When mutable references are added to the picture, substructural types provide further
guarantees on aliasing and uniqueness. In the Cyclone programming language [Swamy et al.,
2006] affine pointers for instance can be used to control initialization of memory cells. A more
unified framework for substructural references is developed in λURAL where substructural
pointers allow safe use of an operation called a strong update [Ahmed et al., 2005]. In most
programming languages, type safe usage of pointers and mutable references require that
the data stored in a reference cell maintain the same type as one updates it, so that no
dereference comes to expect a value of a certain type when the type has changed in the
meantime. The process of updating the contents of a reference to a new value with the same
type is known as a weak update. Since C, like most languages, has a type system which only
checks for weak updates, the following C code is ill-typed without an explicit cast because
it attempts to perform a strong update:

char *cptr = ’a’;
*cptr = 1;

On the other hand, if one can guarantee that no other thread of control has access to
a reference cell at some point, it can be safe to change the very type of data stored in a
reference as long as the static type change is tracked, and this is a strong update. Since
affine and linear pointers cannot be shared, they provide a natural way to control the usage
of strong updates.

In summary, substructural types allow programmers to safely manage resources and state,
especially those involving memory and references.

1.2 Related Work

The development of languages with substructural types has been an active area of research,
and we cannot hope to cover the wide expanse of related work in this area. In this section we
will focus on a few illustrative examples, and try to classify related type system designs along
one of three strands: those with “!” operators inspired by linear logic, those with qualifiers,
and those with substructural kind systems.

1.2.1 Linear Logic

The first inspiration for substructural types comes from proof theory, with the development
of linear logic [Girard, 1987]. This logic was inspired by the analogy of causal reasoning in
daily life. For instance, suppose $1 is the cost of item A, and $1 is also the price of item B.
In this sense one might write $1 ( A and $1 ( B where ( is the linear logic analogue
of the “implies” relation →. However, it isn’t necessarily true then that one can use $1 to
simultaneously buy both item A and item B. In other words one cannot say from the above
that $1( A⊗B where ⊗ is the linear logic analogue of the “and” relation ∧.

What one can say instead is that one could use $1 to choose to buy either item A or
item B. In the language of linear logic this is written $1( A&B where & is the linear logic
representation of a “choice”. This is distinct from the classical “or” relation ∨ since classical
disjunction doesn’t allow one to choose which branch is true.
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Given this intuitive description of ( (linear implication), ⊗ (called “times”), and &
(called “with”), we can write down some representative inference rules for linear logic in the
form of the sequent calculus judgments Γ ` A, which can be read that the proposition A is
true assuming the propositions in Γ.

Linear-Logic-Core

LL-Id

A ` A

LL-TimesI
Γ ` A ∆ ` B

Γ,∆ ` A⊗B

LL-WithI
Γ ` A Γ ` B

Γ ` A&B

LL-ImpI
Γ, A ` B

Γ ` A( B

LL-ImpE
Γ ` A( B ∆ ` A

Γ,∆ ` B

The key characteristic distinguishing it from classical intuitionistic logic is the fact that
assumptions are treated as conserved resources: they must be discharged exactly once. Linear
logic does not allow one to reuse or destroy the assumptions given in Γ. The fact that
assumptions must be used at least once is enforced by the LL-Id rule: there can be no
extraneous assumptions in a derivation. The restriction on using assumptions more than
once is enforced by the combining of assumptions in rules such as the LL-TimesR rule. For
instance, to derive the conjunction A ⊗ B, one must assume both the assumptions used to
derive A and those used to derive B. The same proposition may have to be assumed multiple
times. Thus, in linear logic the context of assumptions Γ is a multiset of propositions.

A purely linear logic however is very weak, so to express standard classical propositions
the “!” operator (often pronounced “of-course”) is introduced. Propositions marked with
“!” are intuitively “always true” and so are unlimited in the sense that unlike normal linear
propositions, they can be reused or ignored.

Linear Logic Bang

LL-Weak
Γ ` B

Γ, !A ` B

LL-Contract
Γ, !A, !A ` B

Γ, !A ` B

LL-Promote
!Γ ` A
!Γ `!A

LL-Derelict
Γ, A ` B
Γ, !A ` B

The act of ignoring an unlimited proposition in the LL-Weak rule is known as weaken-
ing, and the act of reusing an unlimited proposition in the LL-Contract rule is known as
strengthening. These are called substructural operations because the involve manipulating
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the structure of the assumption context in ways that are usually implicit. Throughout this
chapter, we will not treat the substructural exchange operation and consider contexts as
multisets rather than lists.

The !Γ notation is shorthand for a context whose propositions are all marked with a
“!”, so the LL-promote rule tells us that propositions can be marked with “!” when their
assumption dependencies allow for it. The LL-Derelict rule allows us to ignore power of “!”
at any point.

1.2.2 Linear Logic-inspired Languages

Guided by the Curry-Howard isomorphism, one can develop a term language and type system
which mirrors the structure of linear logic [Bierman, 1993, Wadler, 1991, Abramsky, 1993].
One possible formulation adapted fromWadler [1991] and Bierman [1993] is given in figure 1.2
on the next page, where we give the typing judgment Γ.M : A assigning a term M the type
A under context Γ.

This type system is an example of a substructural type system because it restricts the
substructural operations of weakening (i.e. ignoring variable binding assumptions) and con-
traction (i.e. reusing variable binding assumptions). In this case, the two operations are
restricted to types annotated with “!”.

This yields a relatively simple theory, but the “ !” annotations are prevalent in types
whenever one wishes to make use of unlimited values, and in an explicitly typed calculus
(not the one given in figure 1.2) are also prevalent in the terms. In an implicitly typed
calculus such as the one given in figure 1.2, full inference of “ !” is impossible since one term
can be assigned many incompatible types [Wadler, 1991]. For instance, the term λx.x can
be assigned the types A( A or !A( A or !A(!A, but has no most general type.

It is possible to infer a kind of principal “type scheme” for unannotated terms in this theory
using use-types, which impose arithmetic constraints on the occurrences of “!” [Wadler, 1991],
but these schemes can be cumbersome and ad-hoc, and their strengths are captured by the
qualifier based languages discussed below.

1.2.3 Qualifier-Based Languages

Another approach to exposing substructural types is to break types into a qualifier and
a pre-type. For instance, the system given in Ahmed et al. [2005] has the forms given in
figure 1.3 on the facing page. Types τ have kind ?, and are broken down into a pre-type τ
of kind ? and a qualifier ξ of kind Q.

The qualifier (Linear, Unlimited, Affine, etc.) specifies once and for all what substructural
properties a type possesses, while the pre-type specifies the base type. For instance, linearint
and affineint are distinct types in this kind of system. This removes many of the ambiguities
with the “!” operator, but requires more heavyweight machinery for polymorphism, since one
must introduce verbose qualifier level polymorphism to support functions that can handle
say both linear and affine integers [Walker, 2005, Ahmed et al., 2005]. For instance, a
polymorphic pair constructor function might be assigned the following type if it is to work
on arguments with different substructural properties:
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Linear-λ Bang

LLE-Id

x : A . x : A

LLE-ImpI
Γ, x : A .M : B

Γ . λx.M : A( B

LLE-ImpE
Γ . M : A( B ∆ . N : A

Γ,∆ . M N : B

LLE-TimesI
Γ . M : A Γ . N : B

Γ,∆ . (M,N) : A⊗B

LLE-TimesE
∆ . M : A⊗B Γ, x : A, y : B . N : C

Γ,∆ . case M of x⊗ y → N : C

LLE-WithI
Γ . M : A Γ . N : B

Γ . [M,N ] : A&B

LLE-WithE1
Γ . M : A&B

Γ . fst M : A

LLE-WithE2
Γ . M : A&B

Γ . snd M : B

LLE-Promote
!Γ . M : A

!Γ . M :!A

LLE-Derelict
Γ, x : A .M : B

Γ, x :!A .M : B

LLE-Weak
Γ . M : B

Γ, x :!A .M : B

LLE-Contract
Γ, x :!A, y :!A .M : B

Γ, z :!A . {z/x} {z/y}M : B

Figure 1.2: Linear Lambda Calculus with “!”

λURAL-Types

κ ::= Q | ? | ?

τ ::=ξ τ

τ ::= α | 1⊗ | τ1 ⊗ τ2 | τ1( τ2 | ∀α : κ.τ

ξ ::= α | q

q ∈ {U,R,A,L}

Figure 1.3: λURAL Types
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pair : ∀ξ1 : Q. ∀τ1 : ?, τ2 : ?.
(
ξ1τ1
)U
(
(
ξ1τ2
)U
(ξ1

((
ξ1τ1
)
⊗
(
ξ1τ2
))

Even with the annotations for qualifier polymorphism, this doesn’t allow us to apply
“pair” to two types with different qualifiers without either the complications of subtyping or
a richer qualifier language. We might like to write a pair constructor function which assigns
the pair the most general substructural qualifier it can, but this is not possible unless one
expands the qualifier language to allow a type such as the one below:

pair : ∀ξ1 : Q, ξ2 : Q. ∀τ1 : ?, τ2 : ?.
(
ξ1τ1
)U
(
(
ξ2τ2
)U
(ξ1tξ2

((
ξ1τ1
)
⊗
(
ξ2τ2
))

In summary, qualifier based systems are flexible but heavyweight.
Before moving on to kind based systems, it is worth mentioning another well known

example of a substructural type system: the one found in the Clean programming language
[Barendsen and Smetsers, 1996, Vries et al., 2008]. Clean supports uniqueness types which
are similar to linear types but support subtyping in a different direction than that found in
most linear type systems. Otherwise it fits within the framework of other qualifier based
substructural type systems.

1.2.4 Kind-Based Languages

Recent languages such as Alms [Tov and Pucella, 2011] and F ◦ [Mazurak et al., 2010] remove
much of the overhead in qualifier based type systems by using distinct kinds (rather than
qualifiers) to separate substructural types. They do this by observing that the decoupling
between qualifiers and pre-types is often unnecessary. For instance, one rarely needs to
use Uint or Rint types since integers are naturally thought of as unlimited mathematical
quantities. On the other end of the spectrum, types such as Ufile should be illegal if files
are always linear types. Instead, in these systems one sets aside distinct kinds for distinct
substructural classes, so that for instance file would be a type which requires no annotations
but can only be assigned the kind κ = L.

By introducing subtyping, subkinding, and dependent kinds, Alms is able to achieve a
striking amount of polymorphism and code reuse with very low programmer overhead [Tov
and Pucella, 2011]. The issue with writing a polymorphic pair constructor functions is simple
to resolve in Alms, since the pair type constructor ⊗ can be given a dependent kind, so that
given a type α ⊗ β one can derive the most general kind for the pair given the kindings of
the components.

Alms-K-Prod
` Γ

Γ ` (⊗) : Πα+.Πβ+. 〈α〉 t 〈β〉

However, relatively large amounts of metatheoretic machinery are required to support
such a kind system, and it can be hard to extend kind based systems. For instance, Alms
only includes affine and unlimited types, and if one wanted to add relevant and linear types,
it would require adding additional kinds as well as the relevant subkinding rules. Combining
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these new kinds with the extensive kind systems already present in other languages requires
even more work to incorporate the entire lattice.

One closely related area of research which we have not discussed centers around capability
calculi [Crary et al., 1999]. The Vault programming language for instance includes a type
system based on a capability calculus designed specifically to track resource state [DeLine
and Fähndrich, 2001]. It does this by associating resources with basically linear “keys” which
are kept distinct from normal types using a kind system. However, in Vault linearity is not
exposed as a general type system feature and the design choice made is to restrict them to
keys.

1.3 Type Classes
Type classes are a mechanism for supporting ad-hoc polymorphism in functional program-
ming languages. The standard list “map” function is parametrically polymorphic because its
type scheme ∀α, β. (α→ β)→ list α→ list β allows it to be instantiated with any concrete
types α and β, while behaving in a way that is parametric with respect to (i.e. independent
of) the instantiated types. On the other hand, ad-hoc polymorphic functions have implemen-
tations which depend specifically on the types of their arguments, and may not even support
certain argument types. Ad-hoc polymorphism is synonymous with function overloading.
For instance, numeric addition + behaves differently depending on whether it is passed an
integer or a floating point number, but is not defined over arbitrary function types.

Type classes are a mechanism for supporting ad-hoc polymorphic functions by assigning
them a constrained type scheme ∀αi [P ] .τ . Constrained type schemes can only be instanti-
ated with types that satisfy the constraints P . In the case of type classes, these constraints
take the form of membership predicates K τ specifying that τ must be a member of the class
K. A type satisfies a membership predicate K τ when there exists an implementation for the
functions associated with K on τ . Thus, different implementations can be used depending
on the type which one uses to instantiate the type scheme.

As an illustrative example, the Haskell programming language includes an overloaded
equality function “eq” whose type is ∀α [Eq α] .α → α → bool, meaning that eq can be
applied to any argument whose type is a member of the Eq class. In Haskell, this type would
be written:

Eq a => a -> a -> Bool

The Eq class is defined by a class declaration which specifies the collection of methods all
members of a type must support. The class declaration is similar to an interface declaration
in object oriented languages.

class Eq a where
eq :: a -> a -> Bool

Finally, instances are provided for the Eq class which provide implementations of the
equality function on various types, and thus also define the types under which the corre-
sponding class constraint holds. Note that the definition of equality on pairs depends upon
a definition of equality on its components, and thus the constraint Eq α×β holds only when
the Eq constraint holds on the components of the pair.
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instance Eq Int where
eq i1 i2 = int_compare i1 i2

instance (Eq a, Eq b) => Eq (a,b) where
eq (p11 ,p12) (p21 ,p22) = (eq p11 p21) and (eq p12 p22)

1.4 Type Classes for Substructure

If we think of substructural types not in terms of usage counts but in terms of the sub-
structural operations they support, then type classes become a natural system for encoding
substructural types, and address many of the issues found in the three previous approaches
to substructural type systems.

In Clamp, all variables are thus considered linear, and we provide explicit dup (contrac-
tion) and drop (weakening) operations that copy or ignore values, and that are mediated by
typeclasses. For example, in this system relevant types would simply be those for which we
define an instance for dup but not drop. [Wadler and Blott, 1989].

In the language of type classes, we incorporate substructural types through Dup and
Drop classes which describe exactly the types which support the duplication and disposal
operations respectively. In Haskell, the Dup and Drop operations might be defined as follows:

class Dup a where
dup :: a -> (a,a)

class Drop a where
drop :: a -> b -> b

Here dup is a function which copies its argument and returns the copies as a pair. The
drop function is a function that ignores its first argument. Expressing drop as a function
with type a -> unit is awkward since the “unit” may need to be dropped as well.

In Clamp, dup and drop are not defined as functions but are provided as primitives for
syntactic convenience. To enforce substructural restrictions the instance rules for base types
on these substructural type classes are also built in to the language.

With the addition of some new constraints on closure environments and the requisite
instance rules, we can then build up a substructural type system encompassing U,R,A, and
L types which consists of little more than a System-F core with linear types and standard
type class constraints. There is no need for the of-course “!” operator, for qualifiers, or for
kind systems. This is useful from a metatheoretic perspective, and also for programmers
looking for a familiar frame in which to use substructural types or for a way to incorporate
substructural types into existing compilers.

Compared with “!” based systems, using type classes to distinguish substructural types
resolves the need for annotating types with “!” and supports much more polymorphism since
type equality can be made independent of substructural usage. Type classes also alleviate the
need for qualifier polymorphism in qualifier based systems, and also the need for subkinding
polymorphism in kind based systems. For instance, the type for a pair constructor function
in Clamp is simply
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∀α, β [] .α
U−→ β

L−→ α× β

where the substructural properties of the pair type α × β are derived from the instance
rules:

instance Dup α,Dup β =⇒ Dup α× β

instance Drop α,Drop β =⇒ Drop α× β

These tell us that a pair is duplicable when its components are, and similarly for drop.
Kind-based systems such as Alms in fact propagate constraints internally that are very

similar to type class constraints, but type classes provide a more general framework, and
structures such as the subkinding lattice are handled nicely by the implicit lattice structure
of lists of constraints.

Furthermore, using separate type classes for the different substructural operations allows
our system to extend orthogonally to all substructural types. In the context of reference
cells, this means that many operations on refs (such as sharing pointers) that are forbidden
in languages with only linear/affine types such as Alms or F ◦ are allowable on the right
types in Clamp.

Some systems such as λURAL also support the simultaneous usage of U, R, A, and L
types, but they often require the introduction of a delicate system for managing contexts
whose variable-typing bindings have different substructural properties. In Clamp, with the
introduction of dup and drop operations, all variable bindings can be made strictly linear.

Finally, the explicit treatment of substructural dup and drop operations in our language
leads to natural ways to incorporate memory control such as reference counting and strong
reference updates.
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Chapter 2

The Clamp Programming Language

2.1 Basic Features
The Clamp programming language is an ML-like language with a type class system that
supports programming with substructural types. Unlike the λcl core calculus described in
chapter 4, Clamp is a user-facing language. Thus, it contains some bells and whistles that
make practical programming easier, but its type system is fundamentally based on λcl. The
most significant difference between the two is that Clamp supports type inference, which
allows its type checker to infer type schemes for the examples in this chapter without the
need for type annotations.

The syntax and type system presented in this chapter correspond to the type checker I
implemented (see Chapter 5). In particular, the syntax for Clamp is based off of OCaml,
with inspiration for the substructural arrow syntax taken from Alms [Tov and Pucella, 2011].
For the sake of simplicity Clamp does not include named algebraic data-types or a module
system, but there should be no specific difficulties in adding these features.

The first few subsections of this chapter will present Clamp in its more verbose syntax,
where duplication (dup) and dropping (drop) are given explicitly. Later on, the dup and
drop operations will be left implicit since they can be inferred by a separate pass of the type
checker (described in chapter 3), but for the sake of clarity I will start by explicitly specifying
all dup and drop operations.

2.1.1 Linearity

When annotated explicitly with dup and drop, Clamp at its core is a language with a
syntactically linear type system: every variable once brought into scope must be used exactly
once. The additional substructural types are all mediated by the dup and drop operations.
Programming without using dup and drop operations is restrictive, but it is still possible
to write functions which conserve their arguments, for instance a function that swaps the
second components of two pairs. An implementation of such a function in Clamp is given in
figure 2.1 on the next page

To take into account the fact that functions close over their environments, Clamp provides
four different kinds of arrows denoted -X> for X corresponding to U(nlimited), A(ffine),
R(elevant), or L(inear) functions. These functions support different substructural operations

13
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fun p1 -L> fun p2 -L>
letp (p1a , p1b) = p1 in
letp (p2a , p2b) = p2 in
((p1a ,p2b),(p2a ,p1b))

Figure 2.1: Pair Component Swap

fun x -L> (x,x) // BAD: reuses argument

fun x -L> 5 // BAD: ignores argument

fun x -L> fun y -L>
match x with
inl a -> (a, y)

| inr b -> (b, b) // BAD: ignores y, reuses b

Figure 2.2: Nonlinear Functions

but impose corresponding constraints on their closure environments, and thus specify their
substructural properties explicitly. The -L> used above creates linear functions which must
be used exactly once, but impose no constraints on their environments.

In addition, to allow the usage of linear pairs, accessing the components of a pair in
Clamp is done through the letp (x1, x2) = e form which binds both components of a pair at
once. Using the standard fst and snd operations would make it impossible to retrieve both
components of a linear pair without using the pair twice.

Sums in Clamp do not require a special elimination form like pairs do, and one can use
standard ML-style pattern matching to distinguish left and right injections.

As examples of the limitations enforced by a linear type system in the absence of dup
and drop, the functions given in figure 2.2 are all ill-typed since they either reuse or ignore
one of their arguments along one of their execution branches.

2.1.2 Dup and Drop

The dup and drop primitives in Clamp allow one to duplicate and dispose of values and
variables, making explicit the substructural operations of contraction and weakening so that
we can support U (unlimited: dup+drop), R (relevant: dup), and A (affine: drop) types.
Operationally, one can think of dup and drop as copy and destruct operations on their
arguments, though they can also be implemented with techniques such as reference counting.

For instance, the three ill-typed functions in figure 2.2 can be rewritten in figure 2.3 on
the facing page using dup and drop to satisfy linear usage restrictions. In figure 2.3, each
variable is used exactly once along every execution branch. Note that the dup primitive has
a slightly complicated syntax in Clamp since it must rebind its arguments with fresh names
to allow reuse and satisfy linearity.

Dup and drop provide a way to make all usage in Clamp appear syntactically linear
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fun x -L>
dup x as (x0,x1) in
(x0 ,x1)

fun x -L> drop x in 5

fun x -L> fun y -L> match x with
inl a -> (a,y)

| inr b ->
drop y in
dup b as (b0,b1) in
(b0 ,b1)

Figure 2.3: Nonlinear Functions with dup/drop

since they mediate all nonlinear usage of values and variables. In Clamp then, the task of
ensuring that values (with different substructural properties) are used correctly is reduced
to enforcing constraints on the arguments to dup and drop.

Suppose we have a type system where file descriptors are linear such as in Chapter 1.
If fd refers to a file descriptor then the expression drop fd in 4 is ill-typed because drop
cannot be applied to a value of type “file”.

As another example, consider a metaphorical treatment of gold coins of type “gold”. A
function minegold : unit U−→ gold for mining gold coins might be provided. In this system,
units of gold can be lost, but gold cannot be duplicated. Thus “gold” would be a relevant
type, which can be dropped but not duplicated.

In the framework of type classes, one can call drop on a value with type τ if there exists
an instance of the predicate Drop τ , and in this case there is no instance for Drop file. The
dup and drop operations are the sole type class methods of the Dup and Drop type classes,
and introduce the corresponding constraints.

Going back to the code examples in figure 2.3, the first function might be assigned the
type int L−→ int × int since integers are duplicable, but not the type gold L−→ gold × gold
because there would be no instance for Dup gold. It is also possible to assign the first
function a constrained polymorphic type, which will be discussed later in the chapter.

Dup and drop provide explicit ways of managing substructural operations while keeping
the core language consistently linear. However, since they are cumbersome for the user to
write, in chapter 3 we give an optimal algorithm for inferring these operations automatically.
Given a program which uses variables arbitrarily, this algorithm examines where variables
are used and inserts a minimal number of dup and drop operations, renaming variable usages
as it goes, so that the annotated program appears syntactically linear. The task of examining
whether dup and drop operations were used on variables with legal types can then be left to
the main type checker. Given the functions in figure 2.2, a dup/drop insertion pass in fact
infers the annotations given in figure 2.3 and then the main type inference routine can be
run on the latter.
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Throughout the rest of the chapter we will leave the dup and drop operations implicit,
assuming that our type checker will run after an inference algorithm has inserted them and
renamed variables wherever they are needed.

2.1.3 Substructural Constraints and Type Class Instances

Base types in Clamp such as unit and int support both dup and drop (e.g. there are instances
of Dup τ and Drop τ for τ = unit, int). The arrow types also explicitly specify which
operations they support since for instance a R−→ b supports dup but not drop. However, in
Clamp as in kind-based systems such as F ◦ and Alms, compound forms such as pairs and
sums do not specify their substructural properties explicitly. These are instead determined
by instance rules. For example, for pairs we have the type class instance rule:

instance Dup a,Dup b =⇒ Dup (a× b)

which allows us to derive that (1, 1) is a duplicable pair since integers are duplicable.
Since there are no other Dup instance rules for pairs, the code below is invalid because we
cannot derive Dup (int× gold)

// @minegold : unit -U> gold

let mygold = @minegold unit in
(fun a -L> (a,a)) (1,mygold) //BAD: no Dup instance for gold

Note that the “@” syntax above is used to prefix global identifiers which are not built-
in primitives in Clamp. The dup/drop insertion pass can then ignore them since global
identifiers are required to be both duplicable and droppable.

Sound substructural instance rules for all of the built-in types in Clamp are built-in to
the type checker. Clamp does not yet provide a mechanism for defining user instances, but
it would be straightforward to extend the language to allow for user defined type classes and
instances as in Haskell, and to give a way for programmers to specify new types with varying
substructural instance rules.

Allowing users to define custom implementations (as opposed to just static instance rules)
for the dup and drop methods would be more difficult to incorporate into the language. This
issue is discussed in the future work section (section 6.2).

2.1.4 References

References have very delicate instance rules for their substructural properties. Clamp has
both weak and strong references with types denoted by ref rqτ with a qualifier rq.

rq ::= s (strong), w (weak)

To access the data inside a reference, Clamp uses a swap primitive, which take in a reference
cell and a value, and returns both an updated reference cell and the old value stored inside.
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Type Strong Ref Support Weak Ref Support

swap ref rqα× α U−→ ref rqα× α x x
sswap ref sα× β U−→ ref sβ × α x
release ref rqα U−→ unit + α x x
srelease ref sα U−→ α x

Table 2.1: Reference Types in Clamp

Without a swap operation, there would be no way to read from a reference without implicitly
copying its contents, and vice versa for writes. In table 2.1 we give the operations supported
by both strong and weak references.

Note that the swap and sswap operations allow for weak and strong updates on the
appropriate references, and there are also two separate “release” operations for deallocating
a reference. These are provided because it would be illegal to directly drop references that
contain relevant or linear contents. In a strong reference, releasing a reference deallocates it
and returns its contents so that the contents are neither copied nor lost. For weak references
(which can be aliased) we adopt the convention of giving release the option to return either
unit or the cell contents depending on the number of remaining live links into the reference.

We would like to be able to alias weak references so as to share them, but aliasing strong
references allows for unsound usage when two segments of code assume that a strong reference
contains different types. In the code below, we perform a strong update on a cell containing
a function. However, we then try to perform another strong update, expecting the reference
r to still contain a function when it now contains an integer.

fun r -L>
(letp (r1,r1val) = sswap (r,1) in (r1val 1),
letp (r2,r2val) = sswap (r,2) in (r2val 2))

Thus in Clamp, there is no instance rule for duplicating a strong reference, and there are
other restrictions which will be described in chapter 4.

2.1.5 Restrictions on Arrows

The Dup and Drop instances for the different arrow types are simple because they depend
directly on the arrow qualifier. However, we must be careful in tracking the variables captured
by a function’s closure. At a lower level, a function type is an abstraction over an environment
paired with code, so the substructural properties of a function must depend on that of its
environment.

In fact, different forms of arrows impose different Dup and Drop constraints on their
closure environments to ensure the consistency of their own use. For instance, in figure 2.4
on the following page we present two partial applications of curried pair functions.

The first partial application “partial1” yields a linear function (-L>), which cannot be
duplicated or dropped, so it is valid for this function to close over the gold passed in. The
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// Well -Typed
let mygold1 = @minegold unit in
let partial1 =

(fun x -U> fun y -L> (x,y)) mygold1

// Ill -Typed: gold hidden inside unlimited closure
let mygold2 = @minegold unit in
let partial2 =

(fun x -U> fun y -U> (x,y)) mygold 2

Figure 2.4: Partial Application Closures

gold cannot be secretly duplicated by duplicating the linear function.
However, the second partial application “partial2” yields an unlimited function, which

can be duplicated and dropped, so it is not well typed. A function which claims to support
a substructural operation imposes the same constraint on its environment. In this case, an
unlimited function can only be well typed if its closure environment satisfies both Dup and
Drop constraints.

2.1.6 Polymorphism

As seen in Haskell, type class constraints work closely with support for polymorphism. If we
revisit the original three nonlinear functions in figure 2.3 on page 15, we (and the implemented
type checker) can in fact infer the constrained type schemes below. In this notation, ∀αi [P ] .τ
denotes a type scheme where the type variables αi can be instantiated with any τi so long
as they satisfy the constraints in P .

∀α [Dup α] .α
L−→ α× α

∀α [Drop α] .α
L−→ int

∀α [Dup α,Drop α] .α + α
L−→ α

L−→ α× α

In Haskell-like syntax, these would be:

Dup a => a -L> (a,a)
Drop a => a -L> Int
Dup a, Drop a => Either a a -L> a -L> (a,a)

When these type schemes are instantiated with a type, the type system will check that
the type supports the appropriate constraints specified in the type scheme. In figure 2.5 on
the facing page, it is possible to infer a polymorphic type scheme for the function f, but the
later application is ill-typed since the argument does not satisfy the constraint in the type
scheme for f.
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let f = fun x -L>
dup x as (x0,x1) in
(x0 ,x1)
// f : Dup a => a -L> (a,a)
in
(f (@minegold unit)) // BAD: no Dup instance for gold type

Figure 2.5: Bad instantiation

// some : a -U> sum a b
let some = fun x -U> inl x in

(some 1,some @lunit)

// fst : Drop b => pair a b -U> a
let fst = fun p -U>

letp (p1, p2) = p in
p1

// mappair : Dup x => (a -x> b) -U> pair a a -L> pair b b
let mappair = fun f -U> fun p -L>

letp (p1,p2) = p in
(f p1 , f p2)

Figure 2.6: Polymorphism Examples

Type schemes with type class constraints provide much of the same bounded polymor-
phism that kind based substructural systems use subkinding to achieve, and which is fur-
thermore awkward in many substructural and linear type systems. In figure 2.6 for instance,
the “some” function has an inferred polymorphic type which allows it to be applied to any
argument, regardless of its substructural properties. The “fst” function also has an inferred
type scheme which allows it to operate on any pair so long as the second component has a
droppable type. The pair itself is unrestricted in any other way, and itself could either be
droppable or not.

One weakness of the Clamp type system is that arrows are assigned a concrete substruc-
tural qualifier. For instance, in writing a curried pair function, one might want to specify
that a partial application pair x is duplicable when “x” is duplicable. However, in Clamp,
one must decide the substructural properties of a function up front, and assign it a U, R, A,
or L qualifier.

Despite this, type classes are a flexible enough framework that we can emulate some
degree of polymorphism by making the → type constructor take 3 type arguments, in other
words to give it the kind ? → ? → ? → ?. The first argument will be a dummy type U, R,
A, or L which specifies the substructural properties of the arrow, and the second and third
arguments will be the domain and range of the arrow. With this usage of dummy types,
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types such as int int−→ int are well-formed but uninhabited, since every concrete function is
created with a specified qualifier U, R, A, or L.

By using dummy types as qualifiers in this way, type classes allow us a form of bounded
polymorphism on arrows as well. For instance, in the “mappair” example in figure 2.6 on
the preceding page, the type scheme specifies that mappair can map any function which is
duplicable, which includes both -R> and -U> arrows. This treatment of arrow qualifiers is
implemented in the type checker, but is not modeled in the core calculus given in Chapter
4. A similar extension allows the type checker to infer general type schemes on code which
uses weak reference operations. For instance, the function fun r -U> swap (r,1) can be
given the type ∀α [] .ref rq int U−→ (ref rq int) × int, allowing it to be applied to both strong
and weak references.

2.2 Further Examples
As described in Chapter 1, the managing of resources with precise state is one of the strengths
of using substructural types.

2.2.1 File Handles

If Clamp had support for modules, one could imagine exporting a file I/O library with the
following signature:

type fhandle // no Dup/Drop instances for fhandle!

val open : unit -U> fhandle
val close : fhandle -U> unit
val read : fhandle -U> pair int fhandle

However, though there is nothing in Clamp that prevents the addition of modules, they
are not implemented and for now we can provide a dummy implementation which uses a
linear unit type to simulate a file handle. The @lunit builtin identifier creates a linear unit,
and the @ldispose operation consumes a linear unit and disposes of it to return a regular
unit.

let open = fun u -U> @lunit u in
let close = fun f -U> @ldispose f in
let read = fun f -U> (1,f) in // always reads in a "1"

Then, given the above operations, we can write functions which manipulate files.
The function “goodmanip” defined in figure 2.7 on the next page is straightforward, but

the power of substructural types comes from the fact that using the file operations in any
sequence but the correct one would be a type error. For instance, the function “badmanip”
attempts to read from a file after it has been closed. It would not type-check for two reasons.
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let goodmanip = fun u -U>
let f = open u in
letp (data1 ,f1) = read f in
let nil = close f1 in
data1

let badmanip = fun u -U>
let f = open u in
let nil = close f1 in
letp (data1 ,f2) = read f in
data1

Figure 2.7: File Manipulation

Firstly, the file handle f was duplicated even though file handles are linear, and secondly the
file handle f2 was ignored and not disposed of properly.

2.2.2 Shared Pointers

The file example above makes use of linear types, but Clamp supports much more of the
substructural lattice. The combination of U,R,A, and L types as well as strong and weak
references allows for very fine grained control of resources in a program.

As another example, consider a situation where one would like to run two threads con-
currently given a “runParallel” function. One would like both of the threads to have access
to a common file handle for error logging, but one would also like to ensure that the file is
properly closed exactly once in the end.

One way to do this would be to define a single shared weak reference which contains a
file handle. File handles cannot be duplicated, but weak references can be, so both threads
can have access to a common file in this way. In addition, the presence of relevant types in
Clamp makes it possible to guarantee that each spawned thread will attempt to close its file,
while the reference counted dynamics of weak references ensure that both the reference cell
and the file are deallocated properly in the end. The code in figure 2.8 on the following page
is an example of how this could be implemented in Clamp, assuming the file manipulation
library described earlier and a dummy implementation of runParallel.
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let runParallel = fun f -U> fun x -L>
(f x, f x) in

let fref = wnew (open unit) in
let proc = (fun u -R>

match (release fref) with
inl f -> close f

| inr dummy -> dummy
) in

runParallel proc unit

Figure 2.8: Shared File Handles



Chapter 3

Inferring Substructural Operations

As we saw earlier, tracking substructural operations in terms of explicit dup and drop op-
erations is both flexible and natural. However, most conventional programming still relies
heavily on implicit copying and discarding, and inserting these operations by hand can be
a frustrating experience. For instance, consider the function to (approximately) solve the
quadratic formula in figure 3.1.

// findroot : int -U> int -U> int -U> sum int unit
let findroot = fun a -U> fun b -U> fun c -U>

let discr = b*b-4*a*c in
if (discr > 0) then

inl (-b+@sqrt(discr ))/(2*a)
else

inr ()

Figure 3.1: Quadratic Formula Example

To make this function type check, we would need to annotate it as in figure 3.2 on the
following page so that every variable is used once along every execution path.

To address this issue, in this chapter we develop an algorithm for inserting dup and drop
operations automatically into unannotated code. Since different annotations can lead to
different static and dynamic semantics, we prove that our algorithm generates an optimal
annotation in two senses:

• It minimizes the program’s memory usage (Theorem 3.2)

• It imposes the minimal set of type class constraints (Theorem 3.3)

Other languages which make use of explicit substructural operations such as linear lisp
[Baker, 1994] may find the algorithms given in this chapter generally applicable as well. The
“infer” algorithm developed in this chapter shares many similarities with the linear use-type
reconstruction algorithm in Wadler [1991], but none of the relevant optimality properties are
established for that algorithm.

23
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// findroot : int -U> int -U> int -U> sum int unit
let findroot = fun a -U> fun b -U> fun c -U>

dup a,b as (a1 ,a2),(b1 ,b2) in
let discr =

dup b1 as (b3,b4) in
b3*b4 -4*a1*c in

dup discr as (discr1 ,discr2) in
if (discr1 > 0) then

inl (-b2+@sqrt(discr2 ))/(2* a2)
else

drop a2 ,b2,discr2 in
inr unit

Figure 3.2: Quadratic Formula with dup/drop

3.1 A Core Linear Language

To focus on the essential problems, we will start by examining an abstraction of the linear
lambda calculus, λlin

λlin syntax

e ::= x | λx.e | 〈e1, e2〉 | [e1, e2]

ae ::= x | λx.ae | 〈ae1, ae2〉 | [ae1, ae2] | dup Γ in ae | drop Γ in ae

This untyped calculus is designed to model just the substructural parts of a type system
(those that track variable usage counts), allowing us to focus on inserting dup and drop
operators independently of the underlying base types (int, string, etc.). The 〈e1, e2〉 form
constructs a pair, and the [e1, e2] is the linear-logic “with” or “&” form, a sort of delayed
branching computation where one of the branches is later chosen for evaluation. Terms e
which are expressions (abbreviated exp) are unannotated and don’t explicitly satisfy sub-
structural usage constraints. Terms ae which are annotated expressions (abbreviated aexp)
are annotated with dup and drop operations to allow for explicit nonlinear usage of vari-
ables. The dup and drop operations work over contexts Γ which are multisets of variables,
and which will be described in the next section.

We assume implicitly that all variables in λlin have distinct names to avoid dealing with
alpha-conversion and shadowing. This is straightforward to achieve in a real language with
the addition of a renaming pass
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Linear Multiset Environments

Γ : var→ nat

Γ1 + Γ1 = λ (x) .Γ1 (x) + Γ2 (x) Γ1 v Γ2 ≡ ∀x.Γ1 (x) ≤ Γ2 (x)

Γ1 − Γ1 = λ (x) .Γ1 (x)− Γ2 (x) x ∈ Γ ≡ Γ (x) > 0

Γ1 t Γ1 = λ (x) .max (Γ1 (x) ,Γ2 (x)) {x} ≡ λ (y) .

{
1 y = x

0 y 6= x

Γ1 u Γ1 = λ (x) .min (Γ1 (x) ,Γ2 (x))

Figure 3.3: Environment Operations

3.1.1 Linear Environments

The environments or contexts (abbreviated ctxt) Γ in this system only manage scope and
binding by restricting contraction and weakening to explicit dup and drop annotations. They
do not track actual types. In order to avoid for now the messy but straightforward process
of generating names and renaming variables when inserting a dup, we think of contexts Γ
as multisets {x, x, y, z, . . . } of in-scope variables, defined mathematically as functions from
variables to counts. We can then define multiset operations on contexts in figure 3.3.

These operations include combining contexts to join them either by lifting the arithmetic
+ and − operators or by extending the concept of set union and set intersection into t and
u operators. One important detail in our definitions is that we interpret Γ : var → nat for
the naturals: 0,1,2,... Thus (x : nat)− (y : nat) = 0 when y ≥ x.

Then, we can use these linear multiset contexts to define a notion of well-formedness in
figure 3.4 on the following page, which describes when an annotated term ae in λlin accounts
for all nonlinear usage of its variables through explicit dup and drop operations.

Linear Well Formedness: Γ ` ae

The L-Var, L-Abs, L-Pair, and L-Choice rules all follow standard linear lambda calculi.
The L-Var rule requires its context to contain exactly the variable in question so that no
variables are used more or less than the context allows. The environment is split in the L-Pair
rule since a usage of a variable adds towards the total usage count in either component of a
pair, but the environment in the L-Choice rule is shared since no more than one branch of
a “with” form can be taken. The L-Dup and L-Drop rules allow one to perform contraction
and weakening on a context as desired, so long as they are specified explicitly in the dup or
drop forms.
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Linearity Rules

L-Var

{x} ` x

L-Abs
Γ + {x} ` ae x /∈ Γ

Γ ` λx.ae

L-Pair
Γ1 ` ae1 Γ2 ` ae2
Γ1 + Γ2 ` 〈ae1, ae2〉

L-Choice
Γ ` ae1 Γ ` ae2

Γ ` [ae1, ae2]

L-Dup
Γ1 + Γ2 + Γ2 ` ae

Γ1 + Γ2 ` dup Γ2 in ae

L-Drop
Γ1 ` ae

Γ1 + Γ2 ` drop Γ2 in ae

Figure 3.4: Well Formedness Rules

3.1.2 Encoding a Full Language

Many of the forms in Clamp are not included in λlin, for instance function application e1 e2 or
the match construct. This is because we can encode the usage behavior (binding structure)
of every other construct in λcl in terms of the basic ones in λlin. For instance, we can
extend our inference algorithm to map over applications e1 e2 exactly the same way we map
over pairs (e1, e2) since the environment splitting behavior is the same. In figure 3.5 on the
next page we present reductions for a selection of the syntactic forms in λcl which will be
introduced in chapter 4. e∗ is used to denote the homomorphic mapping of e under the
reduction.

As an example, intuitively we can encode a letp (x1, x2) = e in e2 form in terms of pairs
and lambdas because the variable usage behavior of letp is merely to add up the usage
behavior of e and e2 just as a pair would, except to bind two new variables x1, x2 in e2 just
like two lambdas would.

3.2 An Annotation Inference Algorithm

Given an unannotated core term e, we would like our inference algorithm to return an
annotated ae which is well formed. To propagate variable usage information up the AST, it
turns out to be easiest to have the function return both an annotated ae and an environment
Γ such that Γ ` ae. Our inference function infers thus has type exp → aexp × ctxt, and is
defined in figure 3.6 on the facing page.

The intuition behind this algorithm is to try and minimize the context required to vali-
date each subterm by propagating variable usages up the AST. This formulation for infers
is comparatively easy to specify and especially suitable for implementation. However, to
simplify the proofs in this chapter it is convenient to have the inference function return not
just a term but a well-formedness derivation. Thus we extend infers to a more explicit inferd
with type exp→ Γ ` ae in figure 3.7 on page 28. For the rest of the chapter unless otherwise
stated the “inference algorithm” refers to inferd.
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Syntactic Reductions

x x λaq (x : τ) .e λx.e∗

e1 e2  〈e∗1, e∗2〉 inl e, inr e e∗

newrq e e∗ releaserq e e∗

swaprq e1 with e2  〈e∗1, e∗2〉

letp (x1, x2) = e1 in e2  〈e∗1, λx1.λx2.e∗2〉

match e with inl x1 → e1; inr x2 → e2  〈e∗, [λx1.e∗1, λx2.e∗2]〉

· · ·

Figure 3.5: Reducing λcl to λlin

Inference Algorithm

infers : exp→ aexp× ctxt

infers (x) = (x, {x})

infers (λx.e) = let (ae1,Γ1) = infers (e){
(λx.ae1,Γ1 − {x}) when x ∈ Γ1

(λx.drop x in ae1,Γ1) when x /∈ Γ1

infers (〈e1, e2〉) = let (aei,Γi) = infers (ei)

(dup Γ1 u Γ2 in 〈ae1, ae2〉 ,Γ1 t Γ2)

infers ([e1, e2]) = let (aei,Γi) = infers (ei)

([drop Γ2 − Γ1 in ae1,drop Γ1 − Γ2 in ae2] ,Γ1 t Γ2)

Figure 3.6: Inference Algorithm
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Derivation Inference

inferd : exp→ Γ ` ae

inferd (x) = x ` x

inferd (λx.e) = let D :: Γ1 ` ae1 = inferd (e)

D =
· · ·

Γ1 ` ae1
Γ1 − {x} ` λx.ae1 when x ∈ Γ1so Γ1 = Γ11 + {x}

D =
· · ·

Γ1 ` ae1
Γ1, x ` drop x in ae1

Γ1 ` λx.drop x in ae1 when x /∈ Γ1

inferd (〈e1, e2〉) = let Di :: Γi ` aei = inferd (ei)

D1 =
· · ·

Γ1 ` ae1
D2 =

· · ·
Γ2 ` ae2

Γ1 + Γ2 ` 〈ae1, ae2〉
Γ1 t Γ2 ` dup Γ1 u Γ2 in 〈ae1, ae2〉

inferd ([e1, e2]) = let Di :: Γi ` aei = inferd (ei)

D1 =
· · ·

Γ1 ` ae1
Γ1 t Γ2 ` drop Γ2 − Γ1 in ae1

D2 =
· · ·

Γ2 ` ae2
Γ1 t Γ2 ` drop Γ1 − Γ2 in ae2

Γ1 t Γ2 ` [drop Γ2 − Γ1 in ae1,drop Γ1 − Γ2 in ae2]

Figure 3.7: Inference Algorithm on Derivations
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3.3 Algorithm Soundness and Optimality

3.3.1 Preliminaries

Throughout the proofs below, we will need the multiset properties in Lemma 3.1 to verify
that the inference algorithm is sound.

Lemma 3.1 (Multiset Lemmas 1). Multiset Properties:

• (Γ1 t Γ2) + (Γ1 u Γ2) = Γ1 + Γ2

• (Γ1 − Γ2) + Γ2 = Γ1 t Γ2

Proof. See appendix A, page 63

Additionally, note that we defined the operations of +,−,t,u,v by lifting the operations
of +, −, max, min, and ≤ defined on naturals onto functions. Thus we can verify without
proof that various other properties involving natural numbers also hold in their multiset
liftings.

Lemma 3.2 (Multiset Lemmas 2). Lifting Lemmas:

• If Γ1 v Γ
′
1 and Γ2 v Γ

′
2 then Γ1 + Γ2 v Γ

′
1 + Γ

′
2

• If Γ1 v Γ2 then Γ1 − Γ3 v Γ2 − Γ3 for any Γ3

• Γ1 + Γ2 − Γ2 = Γ1

We also define the function erase (ae) which relates annotated terms to their core unan-
notated forms.

Erase

erase : aexp→ exp

erase (x) = x erase (λx.e) = λx.erase (e)

erase (〈e1, e2〉) = 〈erase (e1) , erase (e2)〉 erase ([e1, e2]) = [erase (e1) , erase (e2)]

erase (dup Γ in e) = erase (e) erase (drop Γ in e) = erase (e)

With this we can proceed to show that the inference algorithm is sound.

Theorem 3.1 (Inference Soundness). For any e, inferd (e) is a valid derivation of Γ ` ae
for some Γ and ae where erase (ae) = e.

Proof. By induction on e, making use of Lemma 3.1. See appendix A, page 64 for details.

Then, since most implementations will want to use infers, we can derive the corollary
that the simpler inference algorithm is sound as well.

Corollary 3.1. If infers (e) = (ae,Γ) then Γ ` ae and erase (ae) = e

Proof. By inspection, we can verify that infers (e) = (ae,Γ) iff inferd (e) :: Γ ` ae.
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3.3.2 Memory Usage

Though we have not given a semantics for the memory usage of programs yet, if we have
a valid derivation Γ ` ae intuitively it means that ae requires requires all of the variables
in Γ to be in-memory and live to execute. Thus, we aim to prove that these “live-sets”
(environments) Γ are minimized by our algorithm throughout a program. These results will
also be essential in proving that the inference algorithm duplicates and drops only when
necessary.

We introduce some functions which will prove useful in identifying the minimal environ-
ments required by an annotated term. First the function fv returns the standard set of free
variables in a term, and fv′ is a closely related function defined in terms of fv which is just
fv in almost all places except where a variable is used by both components of a pair. Note
that fv (e) returns a set but we will often implicitly treat it as a multiset that satisfies the
set invariants.

Free Variables

fv : exp→ set (var) fv′ : exp→ lenv

fv (x) = {x} fv′ (〈e1, e2〉) = fv (e1) + fv (e2)

fv (λx.e) = fv (e) \ {x} fv′ (e) = fv (e) otherwise

fv (〈e1, e2〉) = fv (e1) ∪ fv (e2)

fv ([e1, e2]) = fv (e1) ∪ fv (e2)

With these we can establish lower bounds on the sizes of the environments of annotated
expressions. The next few lemmas show that fv is a function which tells us the minimum
environment an expression needs so that a valid annotated expression can be inferred for it,
while fv′ tells us the minimum environment needed to infer an annotated expression that
doesn’t change the root AST constructor of an expression (e.g. doesn’t wrap an expression
in a dup/drop at the root).

Lemma 3.3 (Environments include Free Variables). If Γ ` ae then fv (erase (ae)) v Γ

Proof. By induction on the derivation D for Γ ` ae, taking advantage of the fact that fv
returns a Set, a collection which contains at most one copy of each element.

The induction hypothesis will tell us that for any derivation D, any subderivation D1 ::
Γ1 ` ae1 satisfies fv (erase (ae1)) v Γ1.

Three representative cases are presented below:

Case L-Pair: ae = 〈ae1, ae1〉 and D =

Γ1 ` ae1 Γ2 ` ae2
Γ1 + Γ2 ` 〈ae1, ae2〉 .
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By the induction hypothesis, fv (erase (ae1)) v Γ1 and fv (erase (ae2)) v Γ2. Now,

fv (erase (〈ae1, ae2〉)) = fv (〈erase (ae1) , erase (ae2)〉)

= fv (erase (ae1)) ∪ fv (erase (ae2))

= fv (erase (ae1)) t fv (erase (ae2))

By Lemma 3.2, we can conclude that fv (erase (〈ae1, ae2〉)) v Γ1 + Γ2 as desired.

Case L-Abs: ae = λx.ae1 and D =

Γ + {x} ` ae1
Γ ` λx.ae1 .

By the induction hypothesis, fv (erase (ae1)) v Γ+{x}. Now by Lemma 3.2, fv (erase (ae1))−
{x} v Γ + {x} − {x} so fv (erase (λx.ae1)) v Γ and we are done.

Case L-Dup ae = dup Γ2 in ae1 and D =

Γ1 + Γ2 + Γ2 ` ae1
Γ1 + Γ2 ` dup Γ2 in ae1 .

By the induction hypothesis Γ′ = fv (erase (ae1)) v Γ1 + Γ2 + Γ2. Consider y ∈ Γ′. Since
Γ′ v Γ1 + Γ2 + Γ2, y ∈ Γ1 or y ∈ Γ2 or both. In either case, y ∈ Γ1 + Γ2. However, since Γ′

is a set, it contains at most one copy of each variable, so Γ′ v Γ1 + Γ2.
Thus fv (erase (ae)) v Γ1 + Γ2

In order to relate annotated and unannotated expressions, we need a way to identify the
portions of annotated expressions that correspond to their unannotated components. This is
especially important in quantifying the sizes of the variable context at various points, since
we would like to ignore differences due to permuting or combining consecutive dup or drop
operations. Instead it is easier to focus on the size of the environment at points in the AST
which correspond to points in an unannotated expression. Thus we introduce the concept of
bare expressions.

Definition 3.1. Let bare : aexp→ bool be a predicate on annotated expressions describing
if an expression is unannotated at its root level, i.e. if it is not rooted at a dup or drop.

Let bare-env : (Γ ` ae) → ctxt be a function which takes a derivation and returns the
environment at the closest subderivation with a bare expression.

Bare Expressions and Environments

bare (x) , bare (λx.e) , bare (〈e1, e2〉) , bare ([e1, e2]) = True

bare (dup Γ in e) , bare (drop Γ in e) = False

bare-env

(
D

Γ ` ae

)
=

{
Γ when bare (ae)

bare-env (D) otherwise

Lemma 3.4 (Bare Environments include Sharp Free Variables). If Γ ` ae and bare (ae) then
fv′ (erase (ae)) v Γ
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Proof. By casework on ae.

Case Non-Pair: ae 6= 〈ae1, ae2〉 then since bare (ae) we know that erase (ae) 6= 〈ae1, ae2〉
as well. Thus fv′ (erase (ae)) = fv (erase (ae)) so we can use Lemma 3.3.

Case Pair: ae = 〈ae1, ae2〉 then we have
Γ1 ` ae1 Γ2 ` ae2
Γ1 + Γ2 ` 〈ae1, ae2〉 so by Lemma 3.3 we

have fv (erase (ae1)) v Γ1 and fv (erase (ae2)) v Γ2. By lemma 3.2 we can combine these
inequalities to get fv (erase (ae1)) + fv (erase (ae2)) v Γ1 + Γ2. Thus fv′ (erase (ae)) v Γ1 +
Γ2.

We can then prove the insertion algorithm is optimal in the sense that it achieves these
lower bounds:

Lemma 3.5 (Infer requires Free Variables). If infer (e) returns a derivation for Γ ` ae then
Γ = fv (e)

Proof. Straightforward induction on e, noting that if Γ1,Γ2 are multisets which satisfy set-
invariants, then so does Γ1 t Γ2.

Lemma 3.6 (Infer requires Sharp Free Variables). bare-env (infer (e)) = fv′ (e)

Proof. Casework on e. Let D :: Γ ` ae = infer (e).

Case Non-Pair: If e 6= 〈e1, e2〉 then bare (ae) and bare-env (D) = Γ and fv′ (e) = fv (e)
so we can use Lemma 3.5.

Case Pair: If e = 〈e1, e2〉 then let Di :: Γi ` aei = infer (ei).

D =

D1 D2

Γ1 + Γ2 ` 〈ae1, ae2〉
Γ1 t Γ2 ` dup Γ1 u Γ2 in 〈ae1, ae2〉 .

In this derivation, bare-env (D) = Γ1+Γ2. By Lemma 3.5, Γi = fv (ei). Thus, bare-env (D) =
fv′ (〈e1, e2〉)

Since infer maps recursively over an AST, Lemmas 3.4 and 3.6 tell us that the inference
algorithm produces the smallest possible environment at each bare subexpression. We can
state this as a theorem:

Theorem 3.2 (Context Minimization). infer (e) produces a derivation whose contexts at
each bare expression are minimal compared to all possible other valid derivations which erase
to e.

Proof. By Contradiction. Assume there exists a valid alternative derivation with smaller
bare environment at a subderivation. Lemmas 3.4 and 3.6 show that this is impossible.
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3.3.3 Constraint Optimality

In order for the inference algorithm to interact well with a static type system, it is also key
that it never insert a dup or a drop of a variable when avoiding dups or drops entirely could
be possible. For example, inserting a dup x immediately followed by a drop x doesn’t
affect the live variable environment at any code point, so it is consistent with Theorem 3.2.
However, it imposes Dup and Drop type class constraints on the type of x which might have
been avoided if x were not duplicated or dropped anywhere else in the code. An inference
algorithm which imposed such unnecessary constraints would return frustratingly restrictive
types.

Thus, in the arguments that follow we will show that if a variable can avoid being
duplicated or dropped in a well-formed annotated expression, then our algorithm avoids
doing so.

We begin by establishing some technical conditions on environments that force a well-
formed derivation to resort to dropping or duplicating a variable. This will later allow us to
argue that other derivations which satisfy these conditions must duplicate or drop the same
variables that the inference algorithm does.

Lemma 3.7 (Forced Drop). If Γ ` ae and Γ (x) ≥ 1 and x /∈ fv (erase (ae)),
then ae contains a subterm drop Γ

′
in aes where x ∈ Γ′.

Proof. Induction on Γ ` ae. See appendix A, page 65 for details.

Lemma 3.8 (Forced Dup). If Γ ` ae and Γ (x) ≤ 1 and there exists a subderivation Ds ::
Γs ` aes of Γ ` ae with Γs (x) ≥ 2,

then ae contains a subterm dup Γ
′
in aes where x ∈ Γ

′

Proof. Induction on Γ ` ae. See appendix A, page 66 for details.

Now, by examining the locations at which the infer algorithm inserts dups and drops,
we can use the results in the previous section about the minimal environments a derivation
must include to show that the conditions in Lemmas 3.7 and 3.8 are satisfied by any other
valid derivation, and thus that any other derivation will include analogous duplications or
drops.

Lemma 3.9 (No Unnecessary Drops). Let D :: Γ ` ae = infer (e). If ae contains a subterm
drop Γd in aes with x ∈ Γd then any other well-formed ae′ with erase (ae′) = e contains a
subterm drop Γ

′

d in ae
′
s with x ∈ Γ

′

d.

Proof. If we look back at the definition of the inference algorithm, we can see that we only
insert drop operations inside subexpressions of certain forms. We can thus consider the
shapes of locations where we might insert a Drop. There are two cases:

Case Lam: The Drop appears under a lambda and D contains a subderivation D1 ::
Γ1 ` λx.drop x in aes.

By the L-Abs and L-Drop rule, aes is well-formed under an environment with no x, so
by Lemma 3.3 x /∈ fv (erase (aes)). Then, by the L-Abs rule and Lemma 3.7, any annotation
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of erase (λx.aes) must contain a subterm drop Γ
′

d in ae
′
s with x ∈ Γ

′

d.

Case With: The Drop appears under a “with” form and WLOG D contains D1 :: Γ1 `
ae1 where ae1 = [drop Γd in aes, ae12].

By Lemma 3.5, Γ1 (x) ≤ 1, so by the L-With and L-Drop rule aes is type-able in a
context with no x so by Lemma 3.3, x /∈ fv (erase (aes)). By Theorem 3.2, Γ1 is the smallest
environment that any annotation of erase (ae1) could be well-formed under. However, from
the definition of the infer algorithm, x ∈ Γ1 because x ∈ Γd. This means that any annotation
of erase (ae1) must have a well-formedness derivation Γ

′
1 ` ae

′
1 with x ∈ Γ

′
1 so by Lemma 3.7

and the L-With rule this annotation must contain a drop Γ
′

d in ae
′
s subterm with x ∈ Γ

′

d.

Lemma 3.10 (No Unnecessary Dups). Let D :: Γ ` ae = infer (e). If ae contains a subterm
dup Γd in aes with x ∈ Γd then any other ae′ with erase (ae′) = e and Γ

′ ` ae′ for Γ
′
(x) ≤ 1

contains a subterm dup Γ
′

d in ae
′
s with x ∈ Γ

′

d.

Proof. Consider the locations that the infer algorithm might insert a Dup.
The Dup must appear above a pair and D contains a subderivation D1 :: Γ1 ` ae1 where

ae1 = dup Γd in 〈ae11, ae12〉.

D1 =

Γ1 + Γd ` 〈ae11, ae12〉
Γ1 ` dup Γd in 〈ae11, ae12〉 .

We know from Theorem 3.2 that any other annotation of erase (〈ae11, ae12〉) must be well-
formed in an environment larger than Γ1 + Γd, which by inversion of D1 contains at least
two copies of x. Since any annotation of e must include an annotation of erase (〈ae11, ae12〉),
we know from Lemma 3.8 that any annotation must contain a dup Γ

′

d in ae
′
s subterm with

x ∈ Γ
′

d

The above two lemmas can then be glued together.

Definition 3.2. Let dupvars (ae) be the set (not multiset) of all variables x for which a
subterm dup Γ in ae1 with x ∈ Γ occurs in ae. Let dropvars (ae) be the set of all variables
x for which a subterm drop Γ in ae1 with x ∈ Γ occurs in ae.

Theorem 3.3 (Minimal Dup/Drop Usage). Let D :: · ` ae = infer (e) for a closed expression
e. For any other well formed closed annotation ae′ with erase (ae′) = e, dupvars (ae) ⊆
dupvars (ae′) and dropvars (ae) ⊆ dropvars (ae′) .



Chapter 4

The Clamp Type System

The calculus λcl captures the type system of the Clamp Programming Language and is based
off of System-F [Girard, 1972]. To System-F, two fundamental extensions are made. First,
environment handling and variable binding are treated linearly as in standard linear lambda
calculi or linear logics [Abramsky, 1993, Girard, 1987]. Second, to allow for substructural
dup and drop operations, type class constraints are added to type schemes as in other calculi
that support qualified or predicated type schemes [Stuckey and Sulzmann, 2005, Smith, 1994,
Wadler and Blott, 1989]. The λcl type system also shares many similarities with the aλms
calculus in Tov and Pucella [2011].

Unlike the more user-friendly Clamp language as implemented and described in Chapter
2, λcl is presented with first class polymorphism and does not support type inference. By
translating the language into a Hindley-Milner framework such as HM(X) however, it is
straightforward to add type inference at the cost of first class polymorphism.

4.1 λcl Syntax and Typing

4.1.1 Syntax

In figure 4.1 on the following page we present the syntax for λcl. Dup and drop operations
are explicit in this language, and it can serve as a target for the insertion algorithm described
in chapter 3.

There are standard forms for variables, lambda-abstraction and application. Note how-
ever that lambdas are annotated with a substructural qualifier, since λcl has four distinct
arrow types. Type abstractions also specify the type class constraints they abstract over,
and include a value restriction to avoid forming closures inside type abstractions (the value
forms are given in figure 4.11 on page 45). This means that, unlike lambdas, type abstrac-
tions do not need to be annotated with substructural qualifiers, and also interact nicely with
references.

There is no need to include let-bindings since they can be encoded using linear-lambdas.
The letp (x1, x2) = e form binds both components of a linear pair with one use, since the
standard projection operators could only retrieve one component at a time. Using projection
operators in

let x = fst z in let y = snd z in x+ y

35
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λcl Expressions

e ::= x | λaq (x : τ) .e | e1 e2 | Λαi [P ] .v | e [τi]

| (e1, e2) | inl e | inr e | ()

| letp (x1, x2) = e in e2

|match e with inl x1 → e1; inr x2 → e2

| ` | newrq e | releaserq e | swaprq e1 with e2

| dup e1 as x1, x2 in e2 | drop e1 in e2

rq ::= s (strong) | w (weak)

aq ::= U (unlimited) | R (relevant) | A (affine) | L (linear)

Figure 4.1: λcl Syntax

would violate linearity if z were linear. inl e and inr e are introduction injections for sums
(additive disjunction), and the match form eliminates the sum by case analysis as usual.
A qualified “with” &aq form would be straightforward to add to the language, but can also
be encoded using sums and lambdas.

The newrq e and releaserq e forms are the introduction and elimination forms for ref-
erences. They come in two different forms depending on the parameter rq which describes
whether the reference supports strong update. swaprq e1 with e2 allows linear access to a
reference by exchanging its contents for new contents. The ` are store locations which are
present at runtime but not written by the programmer.

dup e1 as x1, x2 in e2 allows for the substructural operation of aliasing an expression
e1 and binding the two copies. drop e1 in e2 similarly disposes the expression e1. Though
these substructural operations are usually thought of as operating on variables, by extending
them to work over expressions it will be easier to define a small-step substitution semantics
later.

The types in λcl are given in figure 4.2 on the facing page. Clamp contains the standard
sum and product types corresponding to the ⊕ and ⊗ connectives in linear logic. It also
contains both strong and weak reference types. As mentioned earlier, since arrows are
annotated by their substructural qualifier aq, λcl has 4 distinct arrow types also annotated
by aq qualifiers. To incorporate type classes, type schemes encapsulate constraints on their
type variables. P is used to denote a set of atomic Predicate constraints Pred, which are
predicate constructors K applied to a type. For the sake of our current analysis, K is either
a Dup or a Drop.

Since the type system for λcl is linear, it makes use of careful manipulation of variable and
location typing contexts as defined in figure 4.3 on the next page. Variable type contexts Γ are
sets (not multisets) of variable-to-type bindings. Location type contexts Σ are considered
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λcl Types

τ ::= α | τ1
aq−→ τ2 | τ1 × τ2 | τ1 + τ2 | ref rqτ | ∀αi [P ] .τ

P ::= Pred1, . . . ,Predn

Pred ::= Kτ

K ::= Dup | Drop

Figure 4.2: λcl Types

Contexts

Γ ::= x1 : τ1, . . . , xn : τn

Σs ::= `1 7→s τ1, . . . , `n 7→s τn

Σw ::= `1 7→j1
w τ1, . . . , `n 7→jn

w τn ji > 0

Σ ::= Σs,Σw Dom (Σs) ∩Dom (Σw) = ∅

Figure 4.3: Variable and Location Typing Contexts

as sets containing both strong location bindings Σs and reference-counted weak location
bindings Σw. Weak location bindings are annotated with a reference count to track their
usages so that we know when we can deallocate them.

All variables and type variables are assumed to have distinct names in λcl to avoid issues
with shadowing.

Since they are sets of bindings, both kinds of contexts can also be viewed as partial
maps from variables or locations to types. Exchange properties are thus implicit for both
contexts. It is also assumed that all environment are well formed in that a variable is bound
at most once, and we will use the Dom function to refer to the set of variables or labels
whose bindings are present in a context.

Dom
(
`i 7→ji

rq τi

)
=
{
`i
}

Dom (xi : τi) = {xi}

Because Γ and Σ are linear, we can define operations to join them in figure 4.4 on the
following page. However, the join operations ◦ and + are only well-defined when the two
component environments are compatible, which is denoted by Γ1 ^ Γ2 and Σ1 ^ Σ2. Two
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Context Operations

Γ1 ^ Γ2 ≡ Dom (Γ1) ∩Dom (Γ1) = ∅

Σ1 ^ Σ2 ≡ Dom (Σs
1) ∩Dom (Σ2) = ∅ and Dom (Σs

2) ∩Dom (Σ1) = ∅ and

∀` ∈ Dom (Σw
1 ) ∩Dom (Σw

2 ) . Σ1 (`) = Σ2 (`)

Γ1 ◦ Γ1 ≡ Γ1,Γ2 when Γ1 ^ Γ2

Σ1 + Σ2 ≡ Σs
1,Σ

s
2,{

` 7→j
w τ | ` 7→j

w τ ∈ Σw
1 ∧ ` /∈ DomΣw

2 or ` 7→j
w τ ∈ Σw

2 ∧ ` /∈ DomΣw
1

}
,{

` 7→j1+j2
w τ | ` 7→j1

w τ ∈ Σ1, ` 7→j2
w τ ∈ Σ2

}
,

when Σ1 ^ Σ2

Figure 4.4: Context Compatibility and Join

variable contexts are compatible so long as they are disjoint, so that one never ends up with
inconsistent or multiple bindings. Two store contexts are compatible if the strong locations
are disjoint and the weak locations at least agree on their types. Joining variable contexts
appends the two sets of bindings together, while joining location contexts also involves
combining the reference counts of any shared weak locations. In many ways, the operations
for combining contexts resemble those in separation algebras.

We also extend our constraint judgments onto contexts in the usual way by lifting the
constraints onto the types referred to in the contexts, and define shorthand abbreviations
for constrained contexts. These constraints on contexts are defined in figure 4.5 on the next
page.

4.1.2 Typing Rules

The expression typing judgment assigning an expression e a type τ takes the form of a 5 way
relation including variable and location contexts Γ and Σ, as well as a constraint context P
of type class predicates. The location contexts Σ are not used in typing input programs, but
are used in tracking runtime locations `.

Expression Typing: P ; Γ; Σ ` e : τ

The inference rules for this typing relation are given in figures 4.6 and 4.7 on page 40.
Well formedness conditions for type variables appearing in types and on contexts are left
implied. Similarly consistency conditions Σ1 ^ Σ2 and Γ1 ^ Γ2 are implied whenever
contexts are combined.

The core language typing rules are a natural extension of System-F to support type class
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Context Constraints

K Γ ⇐⇒ Kτ for all x : τ ∈ Γ

K Σ ⇐⇒ K (ref sτ) for all ` 7→s τ ∈ Σ and K (refwτ) for all ` 7→i
w τ ∈ Σ

ConstrainU (Γ,Σ) ≡ Dup Γ,Σ, Drop Γ,Σ

ConstrainR (Γ,Σ) ≡ Dup Γ,Σ

ConstrainA (Γ,Σ) ≡ Drop Γ,Σ

ConstrainL (Γ,Σ) ≡ nil

Figure 4.5: Context Constraints

λcl-Typing Core

Cl-Var

P ;x : τ ; · ` x : τ

Cl-TAbs
P1, P2; Γ; Σ ` v : τ Dom (P2) ⊂ αi

P1; Γ; Σ ` Λαi [P2] .v : ∀αi [P2] .τ

Cl-Tapp
P1; Γ; Σ ` e : ∀αi [P2] .τ P1  P2{τi/αi}

P1; Γ; Σ ` e [τi] : τ{τi/αi}

Cl-Lam
P ; Γ, x : τ1; Σ ` e : τ2 P  Constrainaq (Γ,Σ)

P ; Γ; Σ ` λaq (x : τ1) .e : τ1
aq−→ τ2

Cl-App
P ; Γ1; Σ1 ` e1 : τ2

aq−→ τ P ; Γ2; Σ2 ` e2 : τ2

P ; Γ1 ◦ Γ2; Σ1 + Σ2 ` e1 e2 : τ

Cl-Dup
P ; Γ1; Σ1 ` e1 : τ1 P ; Γ2, x1 : τ1, x2 : τ1; Σ2 ` e2 : τ2 P  Dup τ1

P ; Γ1 ◦ Γ2; Σ1 + Σ2 ` dup e1 as x1, x2 in e2 : τ2

Cl-Drop
P ; Γ1; Σ1 ` e1 : τ1 P ; Γ2; Σ2 ` e2 : τ2 P  Drop τ1

P ; Γ1 ◦ Γ2; Σ1 + Σ2 ` drop e1 in e2 : τ2

Figure 4.6: λcl Expression Typing
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λcl-Typing Data

Cl-Pair
P ; Γ1; Σ1 ` e1 : τ1 P ; Γ2; Σ2 ` e2 : τ2

P ; Γ1 ◦ Γ2; Σ1 + Σ2 ` (e1, e2) : τ1 × τ2
Cl-Inl

P ; Γ; Σ ` e : τ1

P ; Γ; Σ ` inl e : τ1 + τ2

Cl-Inr
P ; Γ; Σ ` e : τ1

P ; Γ; Σ ` inr e : τ2 + τ1

Cl-Unit

P ; ·; · ` () : unit

Cl-Letp
P ; Γ1; Σ1 ` e1 : τ11 × τ12 P ; Γ2, x1 : τ11, x2 : τ12; Σ2 ` e2 : τ2

P ; Γ1 ◦ Γ2; Σ1 + Σ2 ` letp (x1, x2) = e1 in e2 : τ2

Cl-Match
P ; Γ1; Σ1 ` e1 : τ11 + τ12 P ; Γ2, x21 : τ11; Σ2 ` e21 : τ2 P ; Γ2, x22 : τ12; Σ2 ` e22 : τ2

P ; Γ1 ◦ Γ2; Σ1 + Σ2 `match e1 with inl x21 → e21; inr x22 → e22 : τ2

λcl-Typing Ref

Cl-LocW

P ; ·; ` 7→1
w τ ` ` : refwτ

Cl-LocS

P ; ·; ` 7→s τ ` ` : ref sτ

Cl-New
P ; Γ; Σ ` e : τ

P ; Γ; Σ ` newrq e : ref rqτ

Cl-ReleaseW
P ; Γ; Σ ` e : ref rqτ

P ; Γ; Σ ` releasew e : unit + τ

Cl-ReleaseS
P ; Γ; Σ ` e : ref sτ

P ; Γ; Σ ` releases e : τ

Cl-SwapW
P ; Γ1; Σ1 ` e1 : ref rqτ P ; Γ2; Σ2 ` e2 : τ

P ; Γ1 ◦ Γ2; Σ1 + Σ2 ` swapw e1 with e2 : ref rqτ × τ

Cl-SwapS
P ; Γ1; Σ1 ` e1 : ref sτ1 P ; Γ2; Σ2 ` e2 : τ2

P ; Γ1 ◦ Γ2; Σ1 + Σ2 ` swaps e1 with e2 : ref sτ2 × τ1

Figure 4.7: λcl Expression Typing (continued)



4.2. TYPECLASS INSTANCES 41

constraints. A syntactic restriction (similar to the context reduction restrictions in Haskell
98) is imposed on the form of constraints we can abstract over in the Cl-Tabs rule, meaning
that type abstractions can only constrain the type variables they abstract over, and not
compound or unrelated types. This makes the meta-theory much easier, and the restriction
is specified using the Dom operator applied to a set of predicates P , which returns the set
of types which are actually constrained by a set of predicates.

Dom
(
Kiτi

)
= τi

In addition, the different substructural arrows impose the corresponding substructural
constraints on both the variable and store contexts they close over in the Cl-Lam rule using
the entailment relation  . The entailment relation P1  P2 can be read “The constraints in
P2 are satisfied given the assumptions in P1” and the relation is defined in section 4.2. Type
abstractions do not need to impose constraints on their contexts as lambdas do because of
the value restriction.

The dup and drop operations constrain the types of their arguments in the natural way.
The only two places where substructural constraints are externally imposed by the type
system are thus in the dup/drop and arrow typing rules.

Since λcl supports both strong and weak references with different substructural properties,
there are a variety of typing rules governing their usage. The runtime store locations ` are
not tagged with a qualifier rq, so whether a location is treated as strong or weak depends on
the typing context Σ. The swap operation returns both an updated reference and the old
contents, so we have it return a pair which can be destructed later. Since both weak and
strong forms of reference cell operations are provided, it is sound to apply the weak ones to
both strong and weak references. The releaserq e forms are used to deallocate a reference
cell and possibly retrieve its contents. Notably, in the case of a weak reference, since the
contents could be linear one way of ensuring linearity while allowing for aliasing is to return
the contents of the reference when the last alias to the cell is released, and unit otherwise.

4.2 Typeclass Instances
The key relation on predicates in our type system is entailment, which describes when one
set of predicates can be inferred from another in the context of the background instance
environment Γis.

Entailment: P1  P2

For instance, entailment allows our type system to derive that int×unit is duplicable because
int and unit are. The rules for entailment presented below are inspired by Jones [1995].

As a definition, one set of predicates entails another when one can derive each predicate
in the latter from the former.

P1  Predi ⇐⇒ P1  Predi

Then, one can give the rules for deriving entailments for single predicates in figure 4.8
on the next page.
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Predicates

Pred-Elt
Pred ∈ P
P  Pred

Pred-Inst
P1  P2 (instance P2 =⇒ Pred) ∈ Γis{τi/αi}

P1  Pred

Pred-Sch
P1, P2  K τ

P1  K (∀αi [P2] .τ)

Figure 4.8: Predicate Entailment

Any predicate already in the assumed context is entailed by the Pred-Elt rule. The
Pred-Inst rule allows one to make use of instances in Γis . Type abstractions are the only
types that cannot be covered by the Pred-Inst rule since they are not built from basic type
constructors, so the Pred-Sch rule defines how their constraints can be derived.

The set of derivable type class instances depends directly on the set of base instances
in Γis, so must define the base instances carefully to preserve substructural properties. In
particular, the instances in Γis are limited to a specific syntactic structure. This makes the
theory simpler, and is easy to check in λcl where the set of instances Γis is given and fixed.

is ::= instance Kiαi =⇒ K (TCon αj) αi ⊂ αj

Γis ::= {is1, is2, · · · , isn}

Then, to define the substructural properties of the built-in types in λcl, figure 4.9 on the
facing page gives the base instance rules in Γis.

On the core types, we need restrictions on duplicating and dropping containers. Since
pairs and sums contain values which might be copied or ignored along with the container,
their instance rules depend on the types of their components. Arrows impose constraints on
their closure environments when they are assigned a qualifier during expression typing, so the
instance rules for arrows depend only on the arrow qualifier. In particular, the substructural
properties of arrows do not depend on their domain and range, since for instance if y is
bound to a string, then duplicating a function λRx.newfile (y) of type ∀α [] .α

R−→ file does
not require duplicating files but does require duplicating y of type string.

Given this closed set of instances in Γis, there is at most one way to derive a Dup or
Drop constraint for a type, since each instance has a conclusion with different head type
constructor, and the Pred-Sch rule is the only way to infer constraints on type abstractions.

Dealing correctly with references is more subtle, as seen in λURAL [Ahmed et al., 2005].
However, we will see that using Dup and Drop type classes alongside reference counting
semantics allows the rules in λURAL to be expressed very simply.

In λURAL, for kinds of references are provided, one for each point on the URAL lattice.
For our purposes, the complete set of restrictions for substructural references in λURAL can
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Base Instances

Dup a,Dup b =⇒ Dup (a× b) Drop a,Drop b =⇒ Drop (a× b)

Dup a,Dup b =⇒ Dup (a+ b) Drop a,Drop b =⇒ Drop (a+ b)

nil =⇒ Dup
(
a

U−→ b
)

nil =⇒ Drop
(
a

U−→ b
)

nil =⇒ Dup
(
a

R−→ b
)

nil =⇒ Drop
(
a

A−→ b
)

nil =⇒ Dup unit nil =⇒ Drop unit

nil =⇒ Dup (refwa) Drop a =⇒ Drop (ref rqa)

Figure 4.9: Base Substructural Type Class Instances in Γis

be broken down as thus:

• A and L references support strong update since they cannot be aliased, while U and
R only support weak update

• U and A references cannot store R and L data since these references can be dropped,
leaving the undroppable data hanging. R and L refs can store R and L data

• U and R references do not support the “free : ref a -> a” elimination form, which retries
the data while consuming a reference, since the actual storage cell may be aliased. A
and L refs do support the “free” elimination form

Interpreting substructural types in terms of type classes simplifies these rules. Rather than
having 4 types of refs, of which strong updates are tied tightly to A and L refs, in Clamp
we have only strong references and weak references. Interpreting the above rules in our
framework yields the following restrictions:

• Strong references cannot be duplicated

• References which support drop can only store droppable data

• Strong references support “free” (The releases e form in λcl) as in URAL.

• Weak references, which may be aliased, support a version of free with type: ref rqa U−→
a + unit. This free only returns the contents of type a when the last copy of the
reference is freed, and otherwise returns unit.

The above four rules capture the restrictions given for λURAL reference and further increase
the expressiveness of the system by splitting out weak and strong references and allowing
for the deallocation of weak references. They are expressed in λcl with 2 short type class
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instances and 2 typing judgments. In this system, rather than having the user specify
substructural properties, he can merely specify the more natural notion of whether he would
like a reference cell to support strong updates. Then the type system can automatically infer
the maximum possible set of substructural operations allowable on the reference based on
its contents. In a full ML or Haskell-like language one can of course declare custom special
reference types without one or more of these capabilities.

In λURAL, references are also classified in terms of whether they support the read and
write operations (in addition to the primitive swap operation). This is very straightforward
to translate into the language of type classes. Though this is not included in λcl or Clamp, to
support Read/Write operations one might define type classes with the following instances:

Dup a =⇒ Readable ref rqa Drop a =⇒ Writable ref rqa

For simplicity then, the read and write operations can be defined at the user level, and
will not be included in the language definition.

4.3 Small Step Semantics
A more realistic semantics for λcl is given in chapter 5, but a simple small step semantics for
λcl is also necessary to give a type soundness proof. We can thus develop a semantics for λcl
that does not take into account the substructural properties of values directly at runtime,
but does so indirectly through the handling of references.

4.3.1 Linear Substitution

The substitution operator can be defined as it is in standard lambda calculus, but its behavior
is more specific on well typed terms in a linear language. Ignoring the other components of
typing relation for the moment, if Γ ` e then Γ tells us exactly the free variables in e, so
we can use our typing rules to further constrain the substitution operation. For instance,
the variable we are substituting out cannot appear in both Γ1 ` e1 and Γ2 ` e2 if we have
Γ1 ◦ Γ2 ` e since there is an implicit disjointness condition when combining contexts.

Thus linear substitution can be defined to take into account the linear usage of variables
in figure 4.10 on the next page, and this will prove useful in the proofs and for intuition for
the small step semantics. Throughout this chapter when performing substitution on well
typed terms we will be referring to linear substitution.

4.3.2 Small-Step Semantics

The small-step semantics uses execution contexts and a global reference-counted store µ to
define a call-by-value single step relation. The runtime structures needed to define this small
step relation are given in figure 4.11 on the facing page. Since the store is more of a map
than a list, exchange properties are implicitly assumed.

Some auxiliary functions for dealing with reference counts on the store are also useful to
define. The function floc given in figure 4.12 on page 46 tells us the multiset of locations
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Linear Substitution

x {v/x} = v

x /∈ fv (e)

e {v/x} = e

e {v/x} = e′ x 6= y

(λy.e) {v/x} = λy.e′

e1 {v/x} = e′1 x /∈ fv (e2)

(e1 e2) {v/x} = e′1 e2

e2 {v/x} = e′2 x /∈ fv (e1)

(e1 e2) {v/x} = e1 e
′
2

e {v/x} = e′ x /∈ fv (e1) ∪ fv (e2)

(match e with inl x1 → e1; inr x2 → e2) {v/x} = match e′ with inl x1 → e1; inr x2 → e2

e1 {v/x} = e′1 e2 {v/x} = e′2 x /∈ fv (e)

(match e with inl x1 → e1; inr x2 → e2) {v/x} = match e with inl x1 → e′1; inr x2 → e′2

· · ·

Figure 4.10: Linear Substitution

Semantic Structs

E ::= [·] | E e | v E | E [τi] | (E, e) | (v, E) | inl E | inr E

|match E with inl x1 → e1; inr x2 → e2 | letp (x1, x2) = E in e

| newrq E | releaserq E | swaprq E with e | swaprq v with E

| dup E as x1, x2 in e | drop E in e

v ::= λaq (x : τ) .e | Λαi [P ] .v | (v1, v2) | inl v | inr v | ` | ()

µ ::= ` 7→i v, µ | ·

Figure 4.11: Runtime Structures
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Free Locations

floc (x) = {} floc (`) = {`}

floc (λaq (x : τ) .e) = floc (e) floc (Λαi [P ] .v) = floc (v)

floc (e1 e2) = floc (e1) + floc (e2) floc ((e1, e2)) = floc (e1) + floc (e2)

floc (letp (x1, x2) = e in e2) = floc (e) + floc (e2)

floc (match e with inl x1 → e1; inr x2 → e2) = floc (e) + (floc (e1) t floc (e2))

· · ·

Figure 4.12: Free Location Counting

Reference Manipulation

incr ` in ` 7→j v, µ = ` 7→j+1 v, µ incr `i in µ = incr `i in · · ·µ

decr ` in ` 7→j v, µ = ` 7→j−1 v, µ when j > 1 decr `i in µ = decr `i in · · ·µ

decr ` in ` 7→1 v, µ = decr (floc (v)) in µ

Figure 4.13: Reference Count Management

that an expression uses, with multiset operations corresponding to those defined in figure 3.3
on page 25. Note that an expression could use a location more than once, and in this case
floc would return multiple copies of that location.

The functions incr ` in µ and decr ` in µ given in figure 4.13 allow us to increment and
decrement reference counts in the heap. Incrementing a location is straightforward, but a
decrement must be defined recursively since deallocating the last pointer to a weak reference
cell involves decrementing the reference counts of all cells the deallocated contents originally
pointed to.

Finally, we can then define the rules for the single step relation in figure 4.14 on the
facing page.

Single Step Relation: (µ1 ; e1) 7−→ (µ2 ; e2)

Linear substitution is used to bind variables to values at runtime, while the dup and
drop operations must also manipulate the reference counts of any weak references inside
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Small-Step Semantics Core

(µ ; (λ (x : τ) .e) v) 7−→ (µ ; e {v/x}) NS-BetaV

(µ ; (Λαi [P ] .v) [τi]) 7−→
(
µ ; v{τi/αi}

)
NS-BetaT

(µ ; match inl v with inl x1 → e1; inr x2 → e2) 7−→ (µ ; e1 {v/x1}) NS-MatchL

(µ ; match inr v with inl x1 → e1; inr x2 → e2) 7−→ (µ ; e2 {v/x2}) NS-MatchR

(µ ; letp (x1, x2) = (v1, v2) in e) 7−→ (µ ; e {v1/x1} {v2/x2}) NS-Letp

(µ1 ; E [e1]) 7−→ (µ2 ; E [e2]) NS-Context

when (µ1 ; e1) 7−→ (µ2 ; e2)

Small-Step Semantics Substruct

(µ ; dup v as x1, x2 in e) 7−→ (incr floc (v) in µ ; e {v/x1} {v/x2}) NS-Dup

(µ ; drop v in e) 7−→ (decr floc (v) in µ ; e) NS-Drop

Small-Step Semantics Ref

(µ ; newrq v) 7−→
(
µ, ` 7→1 v ; `

)
` fresh NS-New(

µ, ` 7→i v1 ; swaprq ` with v2
)
7−→

(
µ, ` 7→i v2 ; (`, v1)

)
NS-Swap(

µ, ` 7→1 v ; releasew `
)
7−→ (µ ; inl v) NS-ReleaseW1(

µ, ` 7→i>1 v ; releasew `
)
7−→

(
µ, ` 7→i−1 v ; inr ()

)
NS-ReleaseW2(

µ, ` 7→1 v ; releases `
)
7−→ (µ ; v) NS-ReleaseS

Figure 4.14: Small-Step Relation
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Store Typing

St-Nil

Σ
s̀
· : ·

St-ConsW
Σ1

s̀
µ : Σ2 ·; ·; Σv ` v : τ

Σ1 + Σv
s̀
µ, ` 7→i v : Σ2, ` 7→i

w τ

St-ConsS
Σ1

s̀
µ : Σ2 ·; ·; Σv ` v : τ

Σ1 + Σv
s̀
µ, ` 7→1 v : Σ2, ` 7→s τ

Figure 4.15: Store Typing

the value we are duplicating or dropping. Every other operation that doesn’t directly deal
with references preserves the number of usages of locations and does not need to change the
reference counts.

The reduction rules that deal explicitly with references must track the reference counts
carefully. Allocating new references creates a new cell with a fresh label and a reference
count of 1. The swap operation conserves reference count, but the release operations must
steadily decrement the reference count of the released cell until the cell itself is deallocated
and the contents extracted.

4.3.3 Store Typings

In a substructural type system, stores both consume and provide store typings. Thus the
the typing relation on a store µ specifies both Σ1 the set of typings used and Σ2 the total
set of provided bindings.

Store Typing: Σ1
s̀
µ : Σ2

The inference rules for store typing are given in figure 4.15. Since the store does not track
whether a location corresponds to a strong or weak reference, the rules are nondeterministic.
The rules are also consistent with our implicit treatment of stores as sets of mappings rather
than ordered lists. For instance, note that permuting the order of elements in a well-typed
store yields a store which can be assigned a store typing Σ′ that is merely the corresponding
permutation of the old store typing. Thus, it is possible to “invert” the St-ConsW and
St-ConsS rules assuming any of the labels ` in a store µ was the last label added.

Finally a configuration is well typed if there exists a location context under which one
can both type the store and also use the remaining bindings to type the current expression.
Its judgment is given in figure 4.16 on the facing page.

Configuration Typing:
c̀

(µ ; e) : τ
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Configurations

Conf
Σ1

s̀
µ : Σ1 + Σ2 ·; ·; Σ2 ` e : τ

c̀
(µ ; e) : τ

Figure 4.16: Configuration Typing

4.4 Type Soundness
The proof of type soundness is made complicated in λcl by the presence of references which
support both strong update and deallocation. One must track the usage of variables and
locations to make sure that the store remains in a consistent state.

The bulk of the work goes into proving preservation, and the key substructural lemma
to prove preservation is Lemma 4.1. Intuitively, this lemma tells us that substructural
constraints on a value’s type respect the substructural constraints of everything the value
contains / depends on.

Lemma 4.1 (Constraints Capture Locations). Consider P ; Γ; Σ ` v : τ . If P  Dup τ then
P  Dup Σ,Dup Γ. Similarly if P  Drop τ then P  Drop Σ,Drop Γ.

Proof. By induction on the typing derivation for v. See appendix A, page 67.

Lemma 4.2 (Substitution). If P ; Γ, x : τx; Σ1 ` e : τ and P ; ·; Σ2 ` v : τx and Σ1 ^ Σ2 then
P ; Γ; Σ1 + Σ2 ` e {v/x} : τ

Proof. By induction on the typing derivation for e, making use of Lemma 67 in the lambda
case. See appendix A, page 68

In proving Preservation, it is also useful to separate out a Replacement Lemma which
specifies exactly how different typing contexts must be combined together in order for one
to substitute a subterm in an evaluation context.

Lemma 4.3 (Replacement). If P ; Γ; Σ ` E [M ] : τ then ∃τ ′,Σ1,Σ2,Γ1,Γ2 such that

• Σ = Σ1 + Σ2 and Γ = Γ1 ◦ Γ2 and P ; Γ1; Σ1 `M : τ ′ and furthermore

• If P ; Γ
′
1; Σ

′
1 `M ′ : τ ′ with Γ

′
1 ^ Γ2 and Σ

′
1 ^ Σ2, then P ; Γ

′
1 ◦Γ2; Σ

′
1 + Σ2 ` E [M ′] : τ

for any M ′,Γ
′
1,Σ

′
1

Proof. By induction on E. See appendix A, page 70.

Another key lemma for proving preservation relates the floc function used to maintain
dynamic reference counts with the store context that a value requires. To state this lemma,
we overload the floc function to also count the occurences of locations in a store context.
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floc
(
`i 7→ji

w vi

)
= `i, · · · , `i︸ ︷︷ ︸

ji

floc
(
`i 7→s vi

)
= `i

floc (Σs,Σw) = floc (Σs) , floc (Σw)

Lemma 4.4 (Store Contexts map Free Locations). If P ; Γ; Σ ` e : τ then floc (e) = floc (Σ).

Proof. Induction on the typing derivation.

With Replacement and Substitution and Free Locations, proving Preservation involves
mostly showing that the store changes in a way that is consistent with its store typing.

Lemma 4.5 (Preservation). If
c̀

(µ1 ; e1) : τ and (µ1 ; e1) 7−→ (µ2 ; e2) then

c̀
(µ2 ; e2) : τ

Proof. By casework on the single step relation. See appendix A, page 70.

Given a standard lemma for canonical forms, the proof for Progress is straightforward
and is omitted.

Lemma 4.6 (Progress). If
c̀

(µ1 ; e1) : τ then either e1 is a value or ∃µ2, e2 s.t. (µ1 ; e1) 7−→
(µ2 ; e2)

With preservation and progress in hand, we can at last derive a type soundness result.

Theorem 4.1 (Type Soundness). If
c̀

(· ; e) : τ then either it diverges or it reduces to a
value configuration (µ ; v) such that

c̀
(µ ; v) : τ .

Proof. By Lemmas 4.5 and 4.6 and induction on the small step reduction sequence.



Chapter 5

Language Implementation

5.1 Type Checking
To test the usability of the Clamp Type System, I implemented a type checker in Haskell
which accepts expressions such as the examples given in Chapter 2 and infers a valid type
scheme if the expression has one. The type checker is based off of the Haskell type checker
described in Jones [1999]. As a whole, the process of extending a Haskell type-checker to
support Clamp was very straightforward, and illustrates one of the strengths of the Clamp
type system: it requires small and orthogonal additions upon a standard Hindley-Milner
based language with type class constraints. Unless otherwise stated below, the standard
parts of the type checker follow the design in Jones [1999].

User Code
Dup/Drop

Insertion

Type

Inference

Typeclass

Instances
Constraint

Solving

Generalized

Type Scheme

Figure 5.1: Type Checker Components

The high level structure of the type checker is given in figure 5.1. Almost all of the
components are laid out just as they would be in a standard Haskell-like type-checker, with
the addition of

1. A dup/drop insertion pass

2. Substructural type class instances

3. Constraints to closure environments in the type inference step

The type inference component executes a slight variant of algorithm W, performing type
unification while accumulating type class constraints. The constraint solver simplifies the

51
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Component Lines of Code
Parser/Lexer 301
Data Structures for Expressions/Types 544
Dup/Drop Insertion 157
Type Class Operations and Instances 190
Type Inference 341
Toplevel Driver 59
Total 1592

Table 5.1: Type Checker Code Breakdown

accumulated constraints and reduces them to a normal form using instance rules which are
provided separately. A generalized type scheme can then be formed from an inferred type
and a canonical set of generalizable type class constraints.

In terms of the the relative sizes of each component, table 5.1 collects the number of lines
of code used by each component.

The dup/drop insertion algorithm and the substructural type class instances constitute
moderately sized additions to a Haskell-like type checker core, but they are self-contained
components and are completely orthogonal to the general type inference and constraint
solving core.

Once the dup and drop operations have been added, constraint inference can treat the
dup and drop operations like any other standard primitive operation with constrained types,
and given the relevant substructural type class instances the constraint solver can treat them
like any other type class instances (such as those for Show or Eq).

The only significant addition to the type inference component lies in the constraints we
have to add to function closures. In Clamp, unlike in Haskell, λaqx.e imposes constraints on
the environment it closes over, depending on the qualifier aq. Thus, about a dozen lines are
needed in the constraint inference step to apply the relevant constraints to variables in the
environment when we close over a function.

The internal kind of the arrow type constructor is also modified slightly to support the
qualified arrow types α aq−→ β in Clamp. As described in section 2.1.6 on page 18, in the
type checker we do this by treating → as a type constructor with kind ?→ ?→ ?→ ? that
takes an extra type argument: a dummy qualifier type.

One benefit of this architecture is that once the dup and drop operations have been in-
serted by a sound annotation algorithm, one does not need to track variable usages elsewhere
in the type checker, since all of the substructural operations are already made explicit in
the code. Outside of the dup and drop insertion step, the implemented type checker needs
no knowledge of how to manipulate substructural environments, and treats all environments
as unlimited just as one would in OCaml or Haskell. Type checking in a system with sub-
structural types is thus broken down into two self-contained steps: annotating substructural
usages on variables and then enforcing substructural constraints on types. The technique
of separating out an explicit annotation step was used to nicely integrate a Uniqueness typ-
ing system with Hindley-Milner in Vries et al. [2008], and the technique is possibly even
more effective in Clamp where the annotations are simply functions with constrained type
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schemes.

If we don’t precisely track environments then, to apply the right set of constraints to
closures our type checker can just count the free variables the lambda expression. This is
sound because the insertion algorithm described in Chapter 3 guarantees that the typing
environment of an annotated requires is exactly the set of free variables.

The dup/drop algorithm itself is a direct implementation of the infers algorithm in Chap-
ter 3. Though the process of renaming is not described there, it is easy to implement in
Haskell with a renaming state monad since if annotation is done bottom up as in infers, the
only situation where renaming is required is when two subexpressions both use the same
variable exactly once. These two usages can then be renamed to refer to the fresh names
provided by a dup operation.

5.2 Memory Management

Though I have not implemented an interpreter or compiler for Clamp, the fact that Clamp
includes explicit dup and drop operations allows for the integration of a reference-counting
runtime system for memory management. In such a system, guarantees of linearity make it
easy to avoid leaking non-cyclic data structures [Walker, 2005, Chirimar et al., 1996].

In this section we present a sketch of an abstract machine which, unlike the semantics
given in Chapter 4, is aware of substructural properties and exploits them to allocate and
deallocate memory efficiently. It is adapted from the ones found in Walker [2005], Chirimar
et al. [1996], but unlike the abstract machine in Walker [2005] reference counts are used to
manage all memory, and unlike the recursive large step semantics in Chirimar et al. [1996]
this machine is formulated as a small step, stack based machine much closer to realistic
implementation.

5.2.1 Refcounting Machine

It is useful in setting up this abstract machine to have it work with expressions that are in
a variation of A-Normal form [Flanagan et al., 1993]. This is because A-Normal form makes
is easy to identify where every allocation and deallocation occurs by flattening all of the
introduction and elimination forms. Let λcl − ANF refer to the ANF variant of λcl used in
this section, and besides the A-Normal restrictions, this language otherwise shares the same
type system and substructural properties as λcl.
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λcl-ANF Syntax

e ::= x | alloc x = I in e | let x = E in e | letp (x1, x2) = x3 in e

| dup x1 as y1, y2 in e | drop x1 in e

E ::= x | x1 x2 |match x with inl x1 → e1; inr x2 → e2

| releaserq x | swaprq x1 with x2

I ::= () | λaq (x : τ) .e | (x1, x2) | inl x | inr x | newrq x

In the syntax presented above, introduction (I) and elimination (E) forms are distin-
guished to distinguish memory allocations and deallocations. Unlike most A-Normal forms,
the only atomic forms are variables since the goal of this machine is to track all allocations
and deallocations, even atomic ones.

Machine Components

H ::= H, ` 7→i 〈〈ρ, I〉〉 | · Heaps

ρ ::= ρ, x 7→ ` | · Environments

S ::= S, 〈〈ρ, λx.e〉〉 | · Control Stacks

Machine Step: H1 ; S1 ; ρ1 ; e1 7−→ H2 ; S2 ; ρ2 ; e2

The abstract semantics for this machine make use of a reference-counted heap H which
maps locations ` to closures consisting of an environment ρ and an introduction form I.
Though the use of full-blown closures is not fully necessary for most introduction forms (e.g.
an inr x form requires an environment mapping one variable to one location), it simplifies
the presentation of the rules. Heaps and environments are treated as partial mappings over
locations or variables, so exchange properties are assumed for both. The stack is used to
manage control flow on function applications, and does not support exchange.

The intuition behind the reference counts is that the count i on a heap location ` 7→i C
tracks i total references to ` found in all of environments ρ in the heap H, in the stack S,
as well as in the main environment ρ. As usual, reference counts are updated lazily, so that
a pair with a reference count of two counts as a single reference to each of its components.
Since all value usage is mediated by variables, all pointers into the heap are found in the
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environments ρ. The environments themselves use bindings linearly, so that every binding
is used exactly once. Some meta-functions for manipulating reference counts are useful to
define, and the ones below are inspired by the ones in Chirimar et al. [1996].

Reference Count Manipulation

incr-ptrs xi 7→ li in H, li 7→ji Ci := H, li 7→ji+1 Ci

decr-ptrs xi 7→ li in H := decr-ptr `i in H

decr-ptr ` in H, ` 7→i 〈〈ρ, I〉〉 :=

{
H, ` 7→i−1 〈〈ρ, I〉〉 i>1
decr-ptrs ρ in H i = 1

elim-clos ` in H, ` 7→i 〈〈ρ, I〉〉 :=

{
H i = 1

incr-ptrs ρ in (H, ` 7→i−1 〈〈ρ, I〉〉) i > 1

Intuitively, the purpose of these functions is that:

• incr-ptrs ρ in H increments the reference count on all the locations in ρ.

• decr-ptrs ρ in H decrements reference counts, but is more complicated because when
a location’s reference count becomes 0, its corresponding closure in the heap is deallo-
cated. This requires all of the locations in the closure to be decremented as well.

• elim-clos ` in H is a function used for some elimination forms. Since some elimination
forms bring a closure’s attached environments into the main environment, we do not
need to decrement the reference counts of locations in the attached environment, and
instead need to increment their reference counts when we end up with two copies of ρ:
one remaining in the heap and one brought into the current environment.

5.2.2 Small Step Semantics

A selection of the small step reduction rules are given below.

Since all allocation is done through creating closures on the heap, the same allocation
rule can be used for all introduction forms.

Allocation Rule

H ; S ; ρ ; alloc x = I in e 7−→

H, ` 7→1 〈〈ρ |fvI , I〉〉 ; S ; (ρ \ fvI) , x 7→ ` ; e
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Variables are the sole atomic form in this abstract machine. To evaluate one, we pop off
the next frame of the control stack and bind the argument.

Var Rule

H ; S, 〈〈ρ, λy.e〉〉 ; ·, x 7→ ` ; x 7−→

H ; S ; ρ, y 7→ ` ; e

Duplication and dropping in this semantics update reference counts and deallocate if
necessary.

Dup Rule

H, `1 7→i 〈〈ρ, I〉〉 ; S ; ρ, x1 7→ `1 ; dup x1 as y1, y2 in e 7−→

H, `1 7→i+1 〈〈ρ, I〉〉 ; S ; ρ, y1 7→ `1, y2 7→ `1 ; e

Drop Rule

H, `1 7→i 〈〈ρ, I〉〉 ; S ; ρ, x1 7→ `1 ; drop x1 in e 7−→

decr-ptr `1 in
(
H, `1 7→i 〈〈ρ, I〉〉

)
; S ; ρ ; e

The elimination forms are often more complicated. For instance, when eliminating a
closure in a function application, one must bring a copy of the closure environment into
main memory.

Elim-App Rule

H, `1 7→i 〈〈ρ2, λy.e1〉〉 ; S ; ρ1, x1 7→ `1, x2 7→ `2 ; let x = x1 x2 in e2 7−→

elim-clos `1 in
(
H, `1 7→i 〈〈ρ2, λy.e1〉〉

)
; S, 〈〈ρ1, λx.e2〉〉 ; ρ2, y 7→ `2 ; e1

Elim-Release-Weak Rule

H, `1 7→1 〈〈y 7→ `2,new
rq y〉〉 ; S ; ρ, x1 7→ `1 ; let x = releasew x1 in e

7−→ H, `ret 7→1 〈〈r1 7→ `2, inr r1〉〉 ; S ; ρ, x 7→ `ret ; e

H, `1 7→i 〈〈y 7→ `2,new
w y〉〉 ; S ; ρ, x1 7→ `1 ; let x = releasew x1 in e when i > 1

7−→ H, `1 7→i−1 〈〈y 7→ `2,new
w y〉〉 , `ret 7→1 〈〈r1 7→ `unit, inr r1〉〉 , `unit 7→1 〈〈·, ()〉〉

; S ; ρ, x 7→ `ret ; e
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The swap operation however doesn’t need to modify any reference counts since it con-
serves its arguments.

Elim-Swap Rule

H, `1 7→i 〈〈y 7→ `3,new y〉〉 ; S ; ρ, x1 7→ `1, x2 7→ `2 ; let x = swap x1 with x2 in e

7−→ H, `1 7→i 〈〈y 7→ `2,new y〉〉 , `ret 7→1 〈〈r1 7→ `1, r2 7→ `3, (r1, r2)〉〉 ; S ; ρ, x 7→ `ret ; e

5.2.3 Reference Count Properties

The guiding principle behind the reduction rules in this reference counting machine has been
to preserve two invariants.

First, variable usage is constrained by linear environments ρ, so that on valid configura-
tions H ; S ; ρ ; e we have

Dom (ρ) = fv (e)

where Dom is the set of variables mapped by an environment.
Second, locations in environments are tracked by reference counts in the heap, so that

on a valid configuration H ; S ; ρ ; e with ` 7→i C ∈ H we have

i =
∑

〈〈ρ1,I1〉〉∈H

Occ` (ρ1) +
∑

〈〈ρ2,I2〉〉∈S

Occ` (ρ2) + Occ` (ρ)

where Occ` counts the number of times ` is mapped-to in an environment.

One can verify that the above properties are preserved by the step relation. Thus, the
memory management guarantee made by this machine is that in a final value configuration
H ; · ; ρ ; v, the only closures still allocated on the heap will be those used directly in v or
those which are part of cyclic structures in H. As part of a runtime system, this would allow
immediate reclamation of a large number of non-cyclic data structures, and would ease the
burdens put on the general garbage collector.
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Chapter 6

Conclusions

6.1 Summary of Contributions
The broad direction of this thesis has been to explore how substructural types can be realized
via type classes. I have focused on Clamp as one possible language that exhibits many of
the benefits of this design. We can divide these benefits into roughly two categories: those
which apply to language researchers and designers in studying type system theory, and those
which apply to language implementors and users in putting the language to work.

• Theoretical Benefits:

– The Clamp type system builds upon a simple and well-understood core. To Sys-
tem F we add only linear contexts, type class constraints, and qualified arrows.

– The type class constraint system captures the URAL lattice succinctly, without
a proliferation of kinds or type-qualifiers.

– The separation of types and their constraints allows for natural substructural
polymorphism.

• Usability Benefits:

– Type class instances can be used to intuitively specify the behavior of state-aware
data structures. For example, one can introduce a rich system of strong and weak
mutable references using only two instance rules.

– Type checking can be split into orthogonal modules. In particular, all substruc-
tural issues can be handled by dup and drop insertion pass and a set of type class
instance rules, while the rest is Hindley-Milner.

– Explicit dup and drop operations allow for a reference counting runtime system.

– Type classes are a familiar and time-tested language feature, making programmer
adoption of substructural types much less imposing.

Thus, we see that languages based on this design can be natural for language designers,
implementors, and programmers.
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Many of the ideas in Clamp are drawn together from the rich body of previous work,
and I believe one of its strengths is that it relies upon very few new and ad-hoc mechanisms.
However, some of the specific original contributions in this thesis include:

• The formulation of a sound type system which combines two language features not
usually found together.

• The integration of a flexible system of strong and weak mutable references, along with
the theoretical framework to establish their safety.

• The development of an optimal algorithm for inserting dup and drop, easing the need
for programmer annotations in any language with explicit substructural operations.

• The implementation of a type checker built directly on top of existing designs.

6.2 Future Work

6.2.1 Custom duplication and dropping

The Clamp programming language relies primarily on the static properties of its type class
system to support substructural types, and does not take advantage of the potential for
type classes to allow custom implementations of substructural operations. In this thesis we
have given possible interpretations of the dup and drop operations in terms of copying and
reference counting, but these are fixed by the language design.

Allowing programmers instead to freely define their own implementations of dup and
drop on custom data types would make possible usages like those seen in C++ with user
defined copy constructors and destructors. One could then define data types which cleverly
and implicitly managed resources like file handles whenever they were copied or deallocated.
At the very least, one could define data types which managed their memory in whatever
way was most appropriate, for instance by allowing either deep-copy or shallow-copy dup
operations, or eager vs lazy drop operations. However, in functional languages with dup and
drop inference, this kind of behavior can be unnerving since the results of simply using a
variable twice become unpredictable.

6.2.2 Polymorphic Arrows

In most cases, Clamp allows programmers to define functions which are inherently polymor-
phic over the substructural properties of their arguments. In these cases, a function which
uses one of its arguments linearly can accept any type, whether it satisfies Dup or Drop,
for that argument. However, this is not the case for functions types, which are annotated
with qualifiers and assigned a fixed qualifier at creation. In λcl, one cannot write a generic
“compose” function that can operate over functions with different qualifiers.

Alms is able to accommodate more polymorphic arrow types by introducing a subtyping
relation on qualified arrows [Tov and Pucella, 2011]. It is able to refine the types of arrows
even further by introducing a language of usage qualifiers which introduces dependencies on
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the substructural properties of type variables. This allows one to write a function whose
arrow type is annotated differently depending on what it ends up closing over.

There are many options available to increase the polymorphic expressiveness of Clamp
without resorting to the complexities of subtyping. As described in section 2.1.6, in the type
checker I have made qualifiers first class types, thus allowing polymorphism over qualifiers
in arrow types without the need for subtyping. However, this is an ad-hoc solution, and a
more principled one might incorporate ideas from qualifier based substructural languages, for
instance by defining a new kind for qualifiers. The idea in Alms of expanding the language
of qualifiers could also be added to Clamp. One possible adaptation of this idea would be
to annotate arrow types with the types of their closure environments, in a sense assigning
them a closure-converted type. The dup and drop instances for arrows could then look
at the closure environment types to determine the arrow type’s substructural properties.
This allows more polymorphism in some cases, but exposes too much information about a
function’s implementation.

6.2.3 Implementation

The current implementation of the Clamp type checker showcases the core type system in
λcl, and could benefit from the addition of some standard language features found in ML or
Haskell. In particular, the addition of algebraic datatypes, user defined instance rules, and a
module system would allow programmers to define libraries that exposed custom types with
varying substructural properties.

I have also not yet implemented an interpreter or a compiler for Clamp, and it would be
interesting to see if one can take advantage of reference counting systems such as the ones
described in this thesis to implement an efficient compiler. Systems which reuse the memory
made available by linear or affine values can perform very well [Baker, 1994].
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Appendix A

Additional Proofs

A.1 Dup/Drop Insertion

Lemma (Multiset Properties). (Lemma 3.1 on page 29)

1. (Γ1 t Γ2) + (Γ1 u Γ2) = Γ1 + Γ2

2. (Γ1 − Γ2) + Γ2 = Γ1 t Γ2

Proof. For property (1) we use the fact that max (a, b) + min (a, b) = a + b to simplify as
follows:

((Γ1 t Γ2) + (Γ1 u Γ2)) (x) = (Γ1 t Γ2) (x) + (Γ1 u Γ2) (x)

= max (Γ1 (x) ,Γ2 (x)) + min (Γ1 (x) ,Γ2 (x))

= Γ1 (x) + Γ2 (x)

= (Γ1 + Γ2) (x)

For property (2), note that

((Γ1 − Γ2) + Γ2) (x) = (Γ1 (x)− Γ2 (x)) + Γ2 (x)

Subtraction and Addition don’t associate over the nats, so we have to use casework. If
Γ1 (x) ≤ Γ2 (x) then Γ2 (x) = max (Γ1 (x) ,Γ2 (x))

(Γ1 (x)− Γ2 (x)) + Γ2 (x) = 0 + Γ2 (x)

= max (Γ1 (x) ,Γ2 (x))

while if Γ1 (x) > Γ2 (x) then Γ1 (x) = max (Γ1 (x) ,Γ2 (x)) and we can reassociate
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(Γ1 (x)− Γ2 (x)) + Γ2 (x) = Γ1 (x)− (Γ2 (x) + Γ2 (x))

= Γ1 (x)− 0

= max (Γ1 (x) ,Γ2 (x))

In either case,

((Γ1 − Γ2) + Γ2) (x) = (Γ1 t Γ2) (x)

Theorem (Inference Soundness). (Theorem 3.1 on page 29)
For any e, inferd (e) is a valid derivation of Γ ` ae for some Γ and ae where erase (ae) = e.

Proof. By induction on e
Case Var: e = x
Trivial by the L-Var rule.
Case Lam: e = λx.e1
By the induction hypothesis we know that inferd (e1) is a valid derivation of Γ1 ` ae1

where erase (ae1) = e1.

Subcase: If x ∈ Γ1 then inferd (e) =

inferd (e1) :: Γ1 ` ae1
Γ1 − x ` λx.ae1 ,

so by the L-Abs rule inferd (e) is well formed.

Subcase: If x /∈ Γ1 then inferd (e) =

inferd (e1) :: Γ1 ` ae1
Γ1, x ` drop x in ae1

Γ1 ` λx.drop x in ae1 ,
so by the L-Abs and L-Drop rule inferd (e) is well-formed.
In either case, erase (inferd (e)) = λx.erase (ae1) = λx.e1
Case Pair: e = 〈e1, e2〉
By the induction hypothesis,
inferd (ei) is a valid derivation of Γi ` aei where erase (aei) = ei.

inferd (e) =

inferd (e1) :: Γ1 ` ae1 inferd (e2) :: Γ2 ` ae2
Γ1 + Γ2 ` 〈ae1, ae2〉

Γ1 t Γ2 ` dup Γ1 u Γ2 in 〈ae1, ae2〉

The bottom inference is derivable by the L-Dup rule with Γa = (Γ1 t Γ2)− (Γ1 u Γ2) and
Γb = Γ1uΓ2 since (Γ1 t Γ2)+(Γ1 u Γ2) = Γ1 +Γ2 by Lemma 3.1. Then the entire derivation
is valid by the L-Pair rule.

In addition, erase (inferd (e)) = erase (〈ae1, ae2〉) = 〈e1, e2〉
Case With: e = [e1, e2]
By the induction hypothesis, inferd (ei) is a valid derivation of Γi ` aei where erase (aei) =

ei.
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inferd (e) =

inferd (e1) :: Γ1 ` ae1
Γ1 t Γ2 ` drop Γ2 − Γ1 in ae1

inferd (e2) :: Γ2 ` ae2
Γ1 t Γ2 ` drop Γ1 − Γ2 in ae2

Γ1 t Γ2 ` [drop Γ2 − Γ1 in ae1,drop Γ1 − Γ2 in ae2]

The bottom inference is derivable by the L-Choice rule. The top rules are derivable by
the L-Drop rules since Lemma 3.1 implies that Γ1 + (Γ2 − Γ1) = Γ2 + (Γ1 − Γ2) = Γ1 t Γ2.

In addition, erase (inferd (e)) = [erase (ae1) , erase (ae2)] = [e1, e2].

Lemma (Forced Drop). (Lemma 3.7 on page 33)
If Γ ` ae and Γ (x) ≥ 1 and x /∈ fv (erase (ae)),
then ae contains a subterm drop Γ

′
in aes where x ∈ Γ′.

Proof. By induction on the derivation D of Γ ` ae

Case L-Var: D = {x} ` x .
Immediate since x ∈ fv (x)

Case L-Abs: D =

Γ + {y} ` ae1 y /∈ Γ

Γ ` λy.ae1
First if Γ (x) ≥ 1 and y /∈ Γ then x 6= y.
Thus, If x /∈ fv (erase (λy.ae1)) then x /∈ fv (erase (ae1)).
(Γ + {y}) (x) ≥ 1 so by the induction hypothesis ae1 contains the appropriate drop

subterm.

Case L-Pair: D =

Γ1 ` ae1 Γ2 ` ae2
Γ1 + Γ2 ` 〈ae1, ae2〉

If (Γ1 + Γ2) (x) ≥ 1 then Γ1 (x) + Γ2 (x) ≥ 1 so either x ∈ Γ1 or x ∈ Γ2.
If x /∈ fv (erase (ae)) then x /∈ fv (erase (ae1)) and x /∈ fv (erase (ae2)) so WLOG assume

x ∈ Γ1.
By the induction hypothesis ae1 contains the appropriate drop subterm so we are done.

Case L-Choice: D =

Γ ` ae1 Γ ` ae2
Γ ` [ae1, ae2]

If x /∈ fv (erase (ae)) then x /∈ fv (erase (ae1)) and x /∈ fv (erase (ae2)).
By the induction hypothesis both ae1 and ae2 contain the appropriate drop subterm so

we are done.

Case L-Dup: D =

Γ1 + Γ2 + Γ2 ` ae1
Γ1 + Γ2 ` dup Γ2 in ae1

erase (ae) = erase (ae1) so x /∈ fv (erase (ae1)).
Clearly Γ v Γ1+Γ2+Γ2 so x ∈ Γ1+Γ2+Γ2 and by the induction hypothesis ae1 contains

the appropriate drop subterm.

Case L-Drop: D =

Γ1 ` ae1
Γ1 + Γ2 ` drop Γ2 in ae1

erase (ae) = erase (ae1) so x /∈ fv (erase (ae1)).
If x ∈ Γ1 + Γ2 then either x ∈ Γ1 or x ∈ Γ2.
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If x ∈ Γ1 then by the induction hypothesis ae1 contains the appropriate drop subterm
and we are done.

If x ∈ Γ2 then drop Γ2 in ae1 is itself the appropriate drop term and we are done.

Lemma (Forced Dup). (Lemma 3.8 on page 33)
If Γ ` ae and Γ (x) ≤ 1 and there exists a subderivation Ds :: Γs ` aes of Γ ` ae with

Γs (x) ≥ 2,
then ae contains a subterm dup Γ

′
in aes where x ∈ Γ

′

Proof. By induction on the derivation D of Γ ` ae

Case L-Var: D = {x} ` x .
Immediate since there is no appropriate subderivation Ds.

Case L-Abs: D =

Γ + {y} ` ae1 y /∈ Γ

Γ ` λy.ae1
Note that (Γ + {y}) (x) = Γ (x) + {y} (x).
Either y = x or y 6= x but in either case since y /∈ Γ, (Γ + {y}) (x) ≤ 1.
The relevant subderivation Ds must be inside Γ+{y} ` ae1 so by the induction hypothesis

we are done.

Case L-Pair: D =

Γ1 ` ae1 Γ2 ` ae2
Γ1 + Γ2 ` 〈ae1, ae2〉

Γ1 (x) ≤ Γ (x) and Γ2 (x) ≤ Γ (x).
The relevant subderivation Ds must be inside either Γ1 ` ae1 or Γ2 ` ae2, so WLOG let

it be Γ1 ` ae1.
Then by the induction hypothesis we are done.

Case L-Choice: D =

Γ ` ae1 Γ ` ae2
Γ ` [ae1, ae2]

The relevant subderivation Ds must be inside either Γ1 ` ae1 or Γ2 ` ae2, so WLOG let
it be Γ1 ` ae1.

Then by the induction hypothesis we are done.

Case L-Dup: D =

Γ1 + Γ2 + Γ2 ` ae1
Γ1 + Γ2 ` dup Γ2 in ae1

Consider Γ (x) = (Γ1 + Γ2) (x).
If Γ (x) = 0 then (Γ1 + Γ2 + Γ2) (x) = 0 so Ds must be inside Γ1 + Γ2 + Γ2 ` ae1 and by

the induction hypothesis we are done.
If Γ (x) = 1 then either Γ1 (x) = 1 or Γ2 (x) = 1.
In this case if Γ1 (x) = 1 then Γ2 (x) = 0 so (Γ1 + Γ2 + Γ2) (x) = 1 so by the induction

hypothesis we are done.
If Γ2 (x) = 1 then the induction hypothesis does not apply but then ae itself is a subterm

dup Γ′ in aes for Γ′ = Γ2 and aes = ae1.

Case L-Drop: D =

Γ1 ` ae1
Γ1 + Γ2 ` drop Γ2 in ae1

If Γ (x) ≤ 1 then Γ1 (x) ≤ 1 and also the subderivation Ds must be inside ae1 so by the
induction hypothesis we are done.
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A.2 λcl Type Soundness

A.2.1 Properties of Constraints and Environments

Throughout all of the proofs we will implicitly assume exchange lemmas for all of our envi-
ronments and contexts. We will also often use the convention of using X1 and X2 to denote
components of a context X where X = X1 + X2. Below we also list some of the other
structural lemmas we use for reasoning about contexts and constraints.

Lemma A.1 (Composing Environment Constraints). If P  K (Γ1) and P  K (Γ2) then
P  K (Γ1 ◦ Γ2). Similarly if P  K (Σ1) and P  K (Σ2) then P  K (Σ1 + Σ2)

Lemma A.2 (Weakening Constraints). If P1; Γ; Σ ` e : τ then P1 ◦ P2; Γ; Σ ` e : τ

Lemma A.3 (Distributing Compatibility). Σ1+Σ2 ^ Σ3 ⇐⇒ Σ1 ^ Σ2∧Σ2 ^ Σ3∧Σ1 ^
Σ3

Lemma A.4 (Contexts capture Free Variables). x ∈ fv (e) iff (P ; Γ; Σ ` e : τ and x ∈ Γ).

A.2.2 Additional Helper Lemmas

The following lemmas are stated without proof, and are useful in fleshing out some possibly
omitted cases in the preservation proof.

Lemma A.5 (Type substitution in Typings). If P ; Γ; Σ ` e : τ and · `wf τi then
P{τi/αi}; Γ{τi/αi}; Σ{τi/αi} ` e{τi/αi} : τ{τi/αi}

Lemma A.6 (Type substitution in Constraints). If P  Kτ then P{τi/αi}  Kτ{τi/αi}

A.2.3 Main Lemmas

Lemma (Constraints Capture Locations). (Lemma 4.1 on page 49)
Consider P ; Γ; Σ ` v : τ . If P  Dup τ then P  Dup Σ,Dup Γ. Similarly if P  Drop τ

then P  Drop Σ,Drop Γ.

Note: This is not true for arbitrary e. Consider ·;x : A; · ` neww x : refwA

Proof. We induct on the typing derivation D of P ; Γ; Σ ` v : τ
Case Cl-TAbs:

Let D =

P ◦ P2; Γ; Σ ` v1 : τ 2 Dom (P2) ⊂ αi

P ; Γ; Σ ` Λαi [P2] .v1 : ∀αi [P2] .τ2 .
We have as an assumption that P  Dup ∀αi [P2] .τ2.
By inversion on the Pred-Sch entailment rule, P ◦ P2  Dup τ2.
Now by induction P ◦ P2  Dup Γ,Dup Σ.
However since Dom (P2) ⊂ αi for αi implicitly fresh, we know that P  Dup Γ,Dup Σ.

Similarly for Drop.
Case Cl-Lam:
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Let D =

P ; Γ, x : τ1; Σ ` e : τ2 P  Constrainaq (Γ,Σ)

P ; Γ; Σ ` λaq (x : τ1) .e : τ1
aq−→ τ2 .

Suppose that P  Dup τ1
aq−→ τ2.

By the instance rules aq is U or R.
Thus since P  Constrainaq (Γ,Σ) we have P  Dup Γ,Dup Σ. Similarly for Drop.
Case Cl-Pair/Cl-Inl/Cl-Inr:
Induction.
Case Cl-LocW and Cl-LocS:
Immediate from the definition of constraints on contexts

Lemma (Substitution). (Lemma 4.2 on page 49)
If P ; Γ, x : τx; Σ1 ` e : τ and P ; ·; Σ2 ` v : τx and Σ1 ^ Σ2 then P ; Γ; Σ1+Σ2 ` e {v/x} : τ

Note, because we need to use the fact that constraints capture contexts, this is also not
true for arbitrary e in place of v.

Proof. We induct on the typing derivation D of P ; Γ, x : τx; Σ1 ` e : τ
Case Cl-Var:

Let D = P ;x : τ ; · ` x : τ .
Note that Γ = · and Σ1 = · and τx = τ . Thus the conclusion is trivial.
Case Cl-Tabs:

Let D =

P, P2; Γ, x : τx; Σ1 ` v1 : τ1 Dom (P2) ⊂ αi

P ; Γ, x : τx; Σ1 ` Λαi [P2] .v1 : ∀αi [P2] .τ1
By the constraint weakening lemma, P, P2; ·; Σ2 ` v : τx.
Thus by the induction hypothesis, P, P2; Γ; Σ1 + Σ2 ` v1 {v/x} : τ1.
Then by Cl-Tabs we are done.
Case Cl-Tapp:

Let D =

P ; Γ, x : τx; Σ1 ` e : ∀αi [P2] .τ1 P  P2{τ ′i/αi}
P ; Γ, x : τx; Σ1 ` e

[
τ ′i
]

: τ1{τ ′i/αi}
By Induction.
Case Cl-Lam:

Let D =

P ; Γ, x : τx, y : τ1; Σ1 ` e1 : τ2 P  Constrainaq (Γ, x : τx,Σ1)

P ; Γ, x : τx; Σ1 ` λaq (y : τ1) .e1 : τ1
aq−→ τ2 .

By induction P ; Γ, y : τ1; Σ1 + Σ2 ` e1 {v/x} : τ2.
If aq = L then by Cl-Lam we are done.
Consider if aq = U.
Since P  Dup τx,Drop τx, by Lemma 4.1,
P  Dup Σ2,Drop Σ2, so P  ConstrainU (Γ,Σ1 + Σ2).
Then using Cl-Lam we are done. The cases for R and L are analogous.
Case Cl-App:

Let D =

P ; Γ1, x : τx; Σ11 ` e1 : τ2
aq−→ τ P ; Γ2; Σ12 ` e2 : τ2

P ; Γ1 ◦ Γ2, x : τx; Σ11 + Σ12 ` e1 e2 : τ
In this case since e1 is typed with x in its context, x ∈ fv (e1), so e {v/x} = e1 {v/x} e2.
The other case where P ; Γ2, x : τx; Σ12 ` e2 : τ2 and e {v/x} = e1e2 {v/x}is analogous.
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Γ = Γ1 ◦ Γ2 and Σ1 = Σ11 + Σ12.
Since (Σ11 + Σ12) ^ Σ2, Σ11 ^ Σ2 and Σ12 ^ Σ2.
Then by induction: P ; Γ1, x : τx; Σ11 + Σ2 ` e1 {v/x} : τ2

aq−→ τ .
We know from Cl-App that Σ11 ^ Σ12, so we can derive that Σ11 + Σ2 ^ Σ12.
Now we can apply Cl-App to finish.
Case Cl-Dup:
Subcase 1:

Let D =

P ; Γ1, x : τx; Σ11 ` e1 : τ1 P ; Γ2, x1 : τ1, x2 : τ1; Σ12 ` e2 : τ P  Dup τ1
P ; Γ1 ◦ Γ2, x : τx; Σ11 + Σ12 ` dup e1 as x1, x2 in e2 : τ

In this subcase, e {v/x} = dup e1 {v/x} as x1, x2 in e2
By compatibility arguments, Σ11 ^ Σ2 so by induction P ; Γ1; Σ11 + Σ2 ` e1 {v/x} : τ1.
By compatibility arguments, Σ11 + Σ2 ^ Σ12.
Then we can apply Cl-Dup and we are done.
The other subcase is analogous
Case Cl-Drop:
Analogous to Cl-Dup
Case Cl-Pair:
Analogous to Cl-App
Case Cl-Inl/Cl-Inr:
Induction
Case Cl-Letp:
Analogous to Cl-App
Case Cl-Match:
Subcase 1:

Let D =

P ; Γ1, x : τx; Σ11 ` e1 : τ11 + τ12
P ; Γ2, x21 : τ11; Σ12 ` e21 : τ P ; Γ2, x22 : τ12; Σ12 ` e22 : τ

P ; Γ1 ◦ Γ2, x : τx; Σ11 + Σ12 `match e1 with inl x21 → e21; inr x22 → e22 : τ
In this subcase e {v/x} = match e1 {v/x} with inl x21 → e21; inr x22 → e22.
Thus we can apply the induction hypothesis to P ; Γ1, x : τx; Σ11 ` e1 : τ11 + τ12 and then

use compatibility arguments to use Cl-Match to finish.
Subcase 2:

D =

P ; Γ1; Σ11 ` e1 : τ11 + τ12
P ; Γ2, x21 : τ11, x : τx; Σ12 ` e21 : τ P ; Γ2, x22 : τ12, x : τx; Σ12 ` e22 : τ

P ; Γ1 ◦ Γ2, x : τx; Σ11 + Σ12 `match e1 with inl x21 → e21; inr x22 → e22 : τ
In this subcase e {v/x} = match e1 with inl x21 → e21 {v/x} ; inr x22 → e22 {v/x}.
Since Σ11 + Σ12 ^ Σ2 then Σ12 ^ Σ2.
Thus we can apply the induction hypothesis twice to get that:
P ; Γ2, x21 : τ11; Σ12 + Σ2 ` e21 {v/x} : τ and P ; Γ2, x22 : τ12; Σ12 + Σ2 ` e22 {v/x} : τ .
By compatibility arguments, Σ12 + Σ2 ^ Σ11, so we can apply Cl-Match to finish.
Case Cl-LocW/ LocS:
Trivial
Case Cl-New/Cl-ReleaseS/W:
Induction
Case Cl-SwapS/W:
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Analogous to CL-App

Lemma (Replacement). (Lemma 4.3 on page 49)
If P ; Γ; Σ ` E [M ] : τ then ∃τ ′,Σ1,Σ2,Γ1,Γ2 such that

• Σ = Σ1 + Σ2 and Γ = Γ1 ◦ Γ2 and P ; Γ1; Σ1 `M : τ ′ and furthermore

• If P ; Γ
′
1; Σ

′
1 `M ′ : τ ′ with Γ

′
1 ^ Γ2 and Σ

′
1 ^ Σ2, then P ; Γ

′
1 ◦Γ2; Σ

′
1 + Σ2 ` E [M ′] : τ

Proof. By induction on E.
From our hypotheses we have that P ; Γ; Σ ` E [M ] : τ .
Case E = [·]:
Trivially with Σ = Σ1, Γ = Γ1, τ ′ = τ
Case E = E1 e:
By inverting the Cl-App rule P ; Γa; Σa ` E1 [M ] : τ1

aq−→ τ and P ; Γb; Σb ` e : τ1.
Now by the induction hypothesis, ∃Γa1,Γa2,Σa1,Σa2, τ

′ such that Γa = Γa1 ◦ Γa2, Σb =
Σa1 + Σa2, P ; Γa1; Σa1 `M : τ ′

and if P ; Γ
′
a1; Σ

′
a1 `M ′ : τ ′ with Γ

′
a1 ^ Γa2 and Σ

′
a1 ^ Σa2, then P ; Γ

′
a1 ◦Γa2; Σ

′
a1 + Σa2 `

E1 [M ′] : τ1
aq−→ τ .

Let Γ1 = Γa1,Σ1 = Σa1, Γ2 = Γa2 ◦Γb,Σb = Σa2 +Σb so that Γ = Γ1 ◦Γ2 and Σ = Σ1 +Σ2

as desired.
The consistency of these context joins is guaranteed from inverting the Cl-App rule and

by the induction hypothesis.
If P ; Γ

′
1; Σ

′
1 ` M ′ : τ ′ with Γ

′
1 ^ Γ2 and Σ

′
1 ^ Σ2 then Γ

′
1 ^ Γa2 and Σ

′
1 ^ Σa2 so

P ; Γ
′
1 ◦ Γa2; Σ

′
1 + Σa2 ` E1 [M ′] : τ1

aq−→ τ .
Now by the Cl-App rule, we can check all of the context compatibility contexts again

and we are done.
Case Remaining: Either analogous to the E = E1 e case or by straightforward induc-

tion.

Lemma (Preservation). (Lemma 4.5 on page 50)
If

c̀
(µ1 ; e1) : τ and (µ1 ; e1) 7−→ (µ2 ; e2) then

c̀
(µ2 ; e2) : τ

Proof. Consider the one step relation. We can transform any derivation of the step relation
into one involving a single use of the NS-Context rule at the root, and then another rule R
above that.

Thus we have e1 = E
[
e
′
1

]
, e2 = E

[
e
′
2

]
and

(
µ1 ; E

[
e
′
1

])
7−→

(
µ2 ; E

[
e
′
2

])
with

Σ1
s̀
µ1 : Σ1 + Σ2 and ·; ·; Σ2 ` E

[
e
′
1

]
: τ from inverting

c̀
(µ1 ; e1) : τ .

By the replacement lemma, ∃τ ′,Σ21,Σ22 such that Σ2 = Σ21 + Σ22 and

·; ·; Σ21 ` e
′

1 : τ ′

so that when ·; ·; Σ21b ` e
′

1b : τ ′ with Σ21b ^ Σ22 then ·; ·; Σ21b + Σ22 ` E
[
e
′

1b

]
: τ

To complete the proof, we need to consider all the possible cases for the rule

R ::
(
µ1 ; e

′

1

)
7−→

(
µ2 ; e

′

2

)
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The majority of these are are straightforward but long applications of the replacement
lemma and manipulations of store typings. We work through three representative cases
below.

Case NS-BetaV:
In this case, R ::

(
µ1 ; λ (x : τ) .e

′
11 v

′
12

)
7−→

(
µ1 ; e

′
11

{
v

′
12/x

})
By inversion on ·; ·; Σ21 ` e

′
1 : τ ′ and the substitution lemma we know that ·; ·; Σ21 `

e
′
11

{
v

′
12/x

}
: τ ′ or in other words ·; ·; Σ21 ` e

′
2 : τ ′.

Thus by the replacement lemma, ·; ·; Σ2 ` E
[
e
′
2

]
: τ and we are done since µ is unchanged.

Case NS-Swap:
Here we have:
R ::

(
µ11, ` 7→i v1 ; swaprq ` with v

′
12

)
7−→

(
µ11, ` 7→i v

′
12 ; (`, v1)

)
Thus µ1 = µ11, ` 7→i v1, e

′
1 = swaprq ` with v

′
12

Consider the derivation of ·; ·; Σ21 ` swaprq ` with v
′
12 : τ ′.

There are two ways to invert this derivation
Subcase Cl-SwapW:
If we invert using the Cl-SwapW rule, we get
τ ′ = ref rqτ ′

1 × τ
′
1 and Σ21 = Σ211, ` 7→1

rq τ
′
1 with ·; ·; ` 7→1

rq τ
′
1 ` ` : ref rqτ ′

1 and ·; ·; Σ211 `
v

′
12 : τ

′
1.

By inversion on the St-ConsW or St-ConsS rule on Σ1
s̀
µ11, ` 7→i v1 : Σ1 + Σ2 since

` 7→1
rq τ

′
1 ∈ Σ1 + Σ2,

we have Σ11
s̀
µ11 : Σ1 + Σ2 −

{
` 7→i

rq τ
′
1

}
and Σ12

s̀
v1 : τ

′
1 where Σ11 + Σ12 = Σ1.

By the Cl-Pair rule, ·; ·; ` 7→1
rq τ

′
1,Σ12 ` (`, v1) : ref rqτ ′

1 × τ
′
1 and since Σ1 ^ Σ2 and

Σ21 ^ Σ22 we have that
(
` 7→1

rq τ
′
1,Σ12

)
^ Σ22.

Thus by the replacement lemma on e′2 = (`, v1), we have that ·; ·; ` 7→1
rq τ

′
1,Σ12 + Σ22 `

E
[
e
′
2

]
: τ .

Σ11 ^ Σ211 since Σ1 ^ Σ2, so by the St-ConsW or St-ConsS rule we can also type the
new store µ2 as Σ11 + Σ211

s̀
µ11, ` 7→i v

′
12 : Σ1 + Σ2 −

{
` 7→i

rq τ
′
1

}
+
{
` 7→i

rq τ
′
1

}
Finally, since(
` 7→1

rq τ
′
1,Σ12 + Σ22

)
+ (Σ11 + Σ211) = Σ1 + Σ2 −

{
` 7→i

rq τ
′
1

}
+
{
` 7→i

rq τ
′
1

}
by the Conf rule we can conclude that

c̀

(
µ11, ` 7→i v

′
12 ; E

[
e
′
2

])
: τ

Subcase Cl-SwapS:
If we invert using the Cl-SwapS rule, we get
τ ′ = ref sτ ′

2×τ
′
1 and Σ21 = Σ211, ` 7→s τ

′
1 with ·; ·; ` 7→s τ

′
1 ` ` : ref sτ ′

1 and ·; ·; Σ211 ` v
′
12 : τ

′
2.

By inversion on the St-ConsS rule on Σ1
s̀
µ11, ` 7→1 v1 : Σ1 + Σ22 +

(
Σ211, ` 7→s τ

′
1

)
since

strong references can only occur once in a well formed store context,
we have Σ11

s̀
µ11 : Σ1 + Σ22 + Σ211 and Σ12

s̀
v1 : τ

′
1 where Σ11 + Σ12 = Σ1.

By the Cl-Pair rule, ·; ·; ` 7→s τ
′
2,Σ12 ` (`, v1) : ref sτ ′

2 × τ
′
1 and since Σ1 ^ Σ2 and

Σ21 ^ Σ22 and ` ∈ Σ21 but ` /∈ Σ22 , we have that
(
` 7→s τ

′
2,Σ12

)
^ Σ22 .

Thus by the replacement lemma on e
′
2 = (`, v1), we have that ·; ·; ` 7→s τ

′
2,Σ12 + Σ22 `

E
[
e
′
2

]
: τ .

Σ11 ^ Σ211 since Σ1 ^ Σ2, so by the St-ConsS rule we can also type the new store µ2 as
Σ11 + Σ211

s̀
µ11, ` 7→1 v

′
12 : Σ1 + Σ22 + Σ211 +

{
` 7→s τ

′
2

}
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Finally, since(
` 7→s τ

′
2,Σ12 + Σ22

)
+ (Σ11 + Σ211) = Σ1 + Σ22 + Σ211 +

{
` 7→s τ

′
2

}
by the Conf rule we can conclude that

c̀

(
µ11, ` 7→1 v

′
12 ; E

[
e
′
2

])
: τ

Case NS-Dup:
In this case:
R ::

(
µ1 ; dup v

′
11 as x1, x2 in e

′
12

)
7−→

(
incr floc

(
v

′
11

)
in µ1 ; e

′
12

{
v

′
11/x1

}{
v

′
11/x2

})
Consider the derivation of ·; ·; Σ21 ` dup v

′
11 as x1, x2 in e

′
12 : τ ′.

By inversion, ·; ·; Σ211 ` v
′
11 : τ

′
1 and ·;x1 : τ

′
1, x2 : τ

′
1; Σ212 ` e

′
12 : τ ′ where Σ21 =

Σ211 + Σ212 and ·  Dup τ ′
1.

Since Σ21 = Σ211 + Σ212 we know Σ211 ^ Σ212 so by the substitution lemma, ·;x2 :
τ

′
1; Σ211 + Σ212 ` e

′
12

{
v

′
11/x1

}
: τ ′.

By the Constraint Captures Locations lemma (Lemma 4.1) since ·  Dup τ ′
1 then Dup Σ211.

This means Σ211 can only contain weak location bindings so Σ211 ^ Σ211.
Then, by the substitution lemma again, ·; ·; Σ211+Σ212+Σ211 ` e

′
12

{
v

′
11/x1

}{
v

′
11/x2

}
: τ ′

The relation Σ21 + Σ211 ^ Σ22 holds so by the replacement lemma ·; ·; Σ2 + Σ211 `
E
[
e
′
12

{
v

′
11/x1

}{
v

′
11/x2

}]
: τ

Remember that Σ1
s̀
µ1 : Σ1 + Σ2.

By the Free Locations lemma (Lemma 4.4) floc
(
v

′
11

)
= floc (Σ211).

Again, Σ211 can contain only weak location bindings so Σ211 ^ Σ2 and Σ1
s̀
incr floc

(
v

′
11

)
in µ1 :

Σ1 + Σ2 + Σ211 .
Finally, by the Conf rule we have

c̀

(
incr floc

(
v

′
11

)
in µ1 ; E

[
e
′
12

{
v

′
11/x1

}{
v

′
11/x2

}])
: τ
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